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Abstract

Cost models play an important role when making design decisions for efficient soft-
ware systems. These models can be embedded in operating systems and execution en-
vironments to optimize execution at run time. Adapting such models to new hardware
architectures requires them to reflect more and more of the paradigms available to
modern parallel computing systems. This thesis provides an overview of parallel cost
models and describes that with the advent of non-uniform memory access architectures
(NUMA), new models have been developed and the priorly existing ones need to be
refined. Therefore, the existing NUMA models are analyzed, and a two-step strategy
is proposed that incorporates low-level hardware counters as performance indicators.
This thesis further focuses on these low-overhead hardware counters, which are avail-
able to all modern CPUs. For four major CPU vendors—ARM, AMD, Intel, and IBM—
hardware counter specifics are presented and explained in detail. Four tools are devel-
oped, all accumulating and enriching specific counter information, to explore, measure,
and visualize these low-overhead performance indicators. EvSel allows for measuring
the whole plenitude of available counters. Two configurations of a program can be
compared, and regressions from program parameters to performance indicators can
be computed. Phasenpriifer attributes indicator measurement records to distinct ramp-
up and calculation phases automatically. Memhist reveals the latency cost distribution
of memory accesses—a major cost factor of recent programs. For analyzing NUMA sys-
tems, Hydralisk artificially strain individual interconnect links while simultaneously
measuring their bandwidths. All mentioned tools are showcased and discussed along-
side specific experiments in the realm of performance assessment. The tools can be

obtained and contributed to in a GitHub repository.!

'https://github.com/chsterz/performance-tools.git






Zusammenfassung

Kostenmodelle sind von grofier Relevanz fiir den Entwurf effizienter Softwaresysteme.
Sie kénnen als Teil von Betriebssystemen oder Ausfithrungsumgebungen durch Lauf-
zeitentscheidungen einen optimalen Programmfluss bewirken. Dafiir ist es notwendig,
diese Modelle an die sich entwickelnde Hardware anzupassen, um die Mechanismen
moderner, paralleler Rechnersysteme beschreiben zu kénnen. Die Arbeit gibt einen
Uberblick tiber Kostenmodelle fir parallele Systeme und motiviert die Notwendig-
keit neuer Modelle fiir das Autkommen moderner nichtuniformer Speicherarchitekturen
(NUMA). Hierzu werden vorhandene NUMA-Modelle analysiert und Vorschlage fiir
eine zweistufige Strategie erarbeitet, die auf den performance counters des Prozessors
als Leistungsindikatoren basiert. Diese Arbeit legt ihren Fokus auf diese Zahler, wel-
che in nahezu allen modernen Prozessoren zu finden sind. Details werden fiir vier der
bedeutendsten Prozessorhersteller, ARM, AMD, Intel und IBM, zusammengefasst und
erldutert. Die Arbeit stellt vier Programme vor, die die Hardware-Z#hlerinformationen
zusammenfithren und anreichern, um diese zu explorieren, messen und visualisieren.
EvSel ermoglicht es, die Gesamtheit der Zahler zu erfassen, mit diesen Programme zu
vergleichen und Regressionen fiir Parameterfolgen zu bestimmen. Phasenpriifer trennt
automatisiert die Messinformationen von der Aufwarm- und der Ausfithrungsphase ei-
nes Programmes. Memhist erlaubt einen Einblick in die Verteilung von Latenzen fiir
Speicherzugriffe, einem der wichtigsten Kostenfaktoren in modernen Computersyste-
men. Um NUMA-Systeme niher zu analysieren, wird Hydralisk als viertes Programm
vorgestellt, das kiinstlich Belastungen auf den Verbindungen der NUMA-Knoten er-
stellt und gleichzeitig deren aktuelle Bandbreite bestimmt. Alle erstellten Programme
und Messwerkzeuge werden architekturell und mit typischen Experimenten zur Leis-
tungsfihigkeit von Computersystemen vorgestellt. Die Programme koénnen iiber ein

GitHub-Repository abgerufen und weiterentwickelt werden.?

“https://github.com/chsterz/performance-tools.git
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1 Introduction

Modern computing systems need to employ parallelization to an increasing extent in
order to perform efficiently on state-of-the-art computer architectures [125]. When op-
timizing for performance, parallel software can be designed with respect to multiple
paradigms. On the one hand, cost models may be applied to theoretically estimate the
performance characteristics of a program before actually executing it. Common per-
formance issues can often be found with the help of cost models [44, 116]. However,
such models are often complex and very theorical, making them inconvenient to apply
in practice. On the other hand, performance may be analyzed with tools at runtime,
which also highlight inefficiencies in specific parts of a software system. Commonly,
multiple measurement tools and methods are combined to optimization strategies to

trace back performance issues systematically [37, 97].

With the advent of non-uniform memory access architectures NUMA), theoretical cost
models become increasingly complex because they need to account for the various
topology characteristics of NUMA-based computer systems, for instance [52]. Like-
wise, recent developments in performance optimization strategies have to be adopted
accordingly. To support such strategies, the set of performance analysis facilities needs

to be enriched with powerful NUMA-specific tools and libraries.

This thesis addresses the need for new strategies and tools for performance assessment
and optimization in NUMA systems. First, existing cost models for parallel computa-
tion are surveyed and categorized. NUMA models are discussed and motivated as an-

other, distinct class of cost models. This thesis makes suggestions when analyzing per-
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formance on NUMA systems. Additionally, a new, two-step strategy for performance

analysis is presented, which makes use of low-level hardware performance counters.

Second, these low-level hardware performance counters are explained in detail as they
exist inside modern processors. The counters of four different hardware vendors are
described: ARM, AMD, Intel, and IBM. Further, this thesis presents existing utilities for

measuring performance on NUMA systems as related work.

Third, four novel measurement tools are developed leveraging the hardware facilities
presented priorly. These tools are helpful for assessing performance with the proposed
two-step strategy. EvSel measures the whole plenitude of available counters, compares
program runs, and performs program parameter regressions. Phasenpriifer automat-
ically attributes indicator measurement records to distinct ramp-up and calculation
phases. Memhist reveals the latency cost distribution for memory accesses as a major
cost factor of recent programs. For analyzing NUMA systems, a fourth tool, Hydralisk,
is developed, which artificially loads individual interconnect links while simultane-
ously measuring their bandwidths. Figure 1.1 relates the four presented tools to the

proposed two-step strategy.

The contribution of this thesis is organized in three chapters, which also summarize

the accompanying work.

Chapter 2 introduces basic concepts and terminologies. This chapter then surveys ex-
isting cost models for parallel computation and, specifically, NUMA. However, draw-
backs are identified when applying the theoretical models to NUMA applications. Thus,

a novel strategy for optimizing performance in NUMA systems is motivated instead.

Chapter 3 contains the technical foundations and related work for developing perfor-
mance optimization tools. First, the performance measurement utilities of CPUs are
described. This chapter then details the performance counters of different hardware

platforms. Finally, various existing performance optimization tools are described.
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Figure 1.1: The four tools developed in this thesis (orange) incorporate hardware coun-

ters and help in adhering to the presented two-step strategy.

Chapter 4 introduces four novel performance analysis tools, which support the perfor-
mance optimization strategy formulated earlier. The tools are built upon perf and use
low-level hardware counters as an intermediate result. EvSel compares program runs
and performs program parameter regressions. Phasenpriifer automatically identifies
ramp-up and calculation phases of a tested program. Memhist reveals the latency cost
distribution of memory accesses. Hydralisk artificially loads individual interconnect
links while simultaneously measuring their bandwidths. This chapter explains devel-
opment considerations of the tools, discusses their scope of applicability, and shows

examplary usage scenarios.

Finally, Chapter 5 concludes and summarizes this work’s contributions. This chapter
provides prospects on the future of cost models and further outlines the work that is
still necessary for creating more accurate cost models on heterogeneous systems in

high-performance computing.






2 Cost Models and Proposals
for Analyzing Performance

This chapter first introduces the theoretical foundations of this thesis and aims to de-
fine relevant terms. In addition, this chapter surveys and summarizes existing models
for parallel computation. Then, existing cost models for NUMA systems are revisited
and distinguished as a new class of cost models. However, drawbacks of applying such
theoretical cost models to NUMA architectures are identified. This chapter then shortly
discusses methods for static code analysis as a means to determine costs, which is
found to be impracticable as well. Finally, instead of instantiating a NUMA model, a
novel strategy for optimizing performance in NUMA systems is motivated, which is

based on low-level hardware counters.

2.1 Cost Models

This section explains common key terms as they are to be understood in this chapter.

A cost model is the symbolic representation of a system’s underlying mechanism, con-
densed as to explain one specific aspect of the system (see Figure 2.1) [120]. In the case
of performance optimization, the specific aspect—or research target—to be understood
are costs. While not changing the functional behavior in computation (that means, still

fulfilling the specifications), reducing costs is desired.

For the sake of performance, there are two major types of models other than cost

models (also called machine models, execution models, or models of computation) [109].
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Figure 2.1: Cost model. A model describes a reduced aspect of the underlying system
(shown in darker grey). For cost models, parameters such as the program, its config-
uration, and the target system’s environment parameters are the input for retrieving
costs. Systems often expose parts of their inner workings through performance in-
dicators. Note that environmental parameters—in this case, software and hardware
parameters—can either be embedded, that is, fixed for the model, or seen as additional

parameters in more flexible cost models.
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First, there are programming models, which support engineers in translating problems
and concepts to program code. Second, hardware or architectural models describe the
inner workings and underlying concepts of a machine [71, 85]. Exemplary use cases

for each of the three model types are:
+ Programmers optimize the parallel performance of a program using a cost model.

+ Programmers look for programming languages and libraries that adhere to the

right programming model and that fit their problem’s domain.

» Programmers pick hardware for their data-intense algorithms according to the

most suitable hardware architecture model, for instance, NUMA.

2.1.1 Performance Costs

Costs can be thought of as placeholders for anything that reduces the system’s ability to
fulfill the task from an operator’s perspective. This may be time, energy consumption,
or money savings. Costs in one domain of a program might have an impact on other
domains and finally on the result, even though the execution still fulfills the program
specifications [115]. For example, communication overhead inside a distributed system
might influence the execution time. This, in turn, influences the energy consumption,

which subsequently influences the money spent on electricity, cooling, and so on.

Though many other interpretations of costs (for instance, memory usage, response
time, or throughput) might be considered, execution time is the commonly prevailing
target for optimization [90]. In many cases, all other cost factors such as energy or
cooling expenses are directly tied to the execution time [15, 119]. Even small time dit-
ferences might result in absolute advantages (»all or nothing«) in the competition for
customers or research grants. For the reasons mentioned above, this thesis considers

execution time as costs only.
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Note that the theoretical deduction of costs is only a heuristic evaluation of an actual

system because of the simplifications made by the cost model [82].

2.1.2 Model Notation and Automated Evaluation

There exist many formulations of models, and these are interpretable by automatic sys-
tems to different extents. Cost models may be mere constructs of the mind, that is, the
programmer’s experience about what is efficient and what is not. These mental mod-
els can neither be gauged nor automatically applied by means of software engineering,
though. In the literature, there are many models that are formulated in text form [116].
These already provide concrete guidance whether certain parameters should be higher
or lower for better performance results. Such easy rules enable discrete decisions in
automatic optimization facilities inside the software yet allow only for simplistic de-

pendencies between input parameters and costs (»Higher is better« and so on).

2.1.3 Cost Functions

The most suitable models for automatic evaluation comprise algorithms or formulas
that determine costs based on input parameters [85, 142]. This thesis refers to such
mechanisms as cost functions. A cost function is an abstract, automatable expression of
a system’s underlying mechanism. While they are practical for automatic usage, these
functions are hard to obtain or to generalize. Programmers might still prefer models

in textual or graphical form or might only rely on prior experience.

Cost functions are mappings from a multi-dimensional space of input parameters to
numeric cost values. The core task of descriptive models is to select a set of candi-
dates from all parameters, which then form a subdimensional manifold (later called

cost landscape). This also requires all input parameters to be numerically evaluateable.
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Figure 2.2: Embedded cost model. Often times, cost models are embedded in the soft-
ware systems they are supposed to evaluate. At specific points in the program’s execu-
tion flow, multiple options are generated and evaluated with respect to the embedded

cost model. In the end, decisions that minimize costs are made accordingly.

These last two tasks—reducing dimensionality and numerically encoding complex in-

put parameters such as the system’s topology—are later discussed in Section 2.3.

2.1.4 The Necessity of Cost Models in Computation

Cost models are widely used in all areas of computing [83, 118]. Some models are able
to compare two different execution paths of a program. With such models, software
can make dynamic decisions at runtime for optimization purposes. In these cases, the
cost models are embedded within the described system [67]. A generalized scheme of
such embedded models is depicted in Figure 2.2. Embedded models can be found in
most essential operating system algorithms and standard libraries for programming,.
By comparing modeled costs based on the requested amount of data, different resource
allocation strategies might be employed, for example [136]. In the following, this thesis

presents more examples for embedded cost models.
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A rather classical application of cost models are database query planners [50, 54]. In this
example, multiple orders of joins, filters, and projections are analyzed and reordered for
minimized I/O and CPU costs. Furthermore, more fundamental database components

such as spatial indices are formed and analyzed using cost models [12].

Cost models can also be found in the realm of compilers and just-in-time-enabled (JIT)
interpreters. The g++ compiler is able to express a stream of instructions in a cost-
efficient way for different processor architectures, hereby reducing cycles and pipeline
stalls as the cost target. By exploring the optimization flags, a search for the most
effective program compilation can be performed [65]. Programmers are even able to
track the cost considerations of g++ when analyzing costs for a verbose vectorizer [57].
Clang also makes use of a cost model to compare vectorized and non-vectorized com-

pilations of the same code [128].

Modern JIT interpreters weigh the costs of analysis and compilation against speed
gains for partly compiled code. RPython’s tracing JIT does this implicitly. When sur-
passing a certain threshold of a counter attached to the backjump instruction, the re-
peatedly run code path is compiled to bytecode. Since this just-in-time compilation
only works when adhering to previously analyzed assumptions, guards are inserted.
Should one of these assumptions be violated, the guard triggers the interpreter either
to execute the non-compiled code version or to compile the new path of execution,
too [18]. In this way, cost optimizations in program runs are supported by the model’s

tuneability through thresholding parameters.

Frameworks for heterogeneous multiprocessing such as OpenCL, which are able to

schedule work for different executors, are another realm of effective cost models [121].

The point in time at which cost models are applied and evaluated can differ. Papers exist
that present cost models based on benchmarks run when installing the system [118]

or on hardware lookups in a database (which the authors call adaptive mapping) [83].
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Others employ execution time kernel profiling and device profiling to classify threads

as memory-bound or CPU-bound and to schedule them accordingly [4].

2.2 Three Generations of Parallel Performance Models

With the development of computers towards parallel program execution, new models
needed to be found [39]. This section portrays the development of parallel computation
models in three historical eras as classified first by Zhang et al. [142]. Most computation
models adapt and enrich few well-known models to address a certain characteristic
that limited the applicability of that general model before. A rough timeline of the
three historical eras of models in parallel computation can be seen in Figure 2.3. A few

representative examples of each era are explained in more detail in the following.

The early, sequential models were fused representations of computation, programming,
and hardware models in a single notation. Turing’s theoretical model of a single-band
machine was a description as well as prescription of band machines existing at that
time. Nowadays, it serves primarily as a theoretical computation construct for theoret-

ical computer scientists [131].

Von Neumann’s random-access machine (RAM) [64] and the concept of random-access
stored-program machines (later referred to as the Von Neumann architecture [133])
were both theoretical constructs and blueprints for most of the later computing hard-

ware. Von Neumann’s ideas are also found in the parallel models developed afterwards.

RAM can be seen as a bridging model from band machines to systems with arbitrarily-
sized numbers of registers. Yet, a bridging model translating sequential concepts to
their parallel counterparts cannot be found. In theoretical computer science, however,
there are complexity classes comparing sequential and parallel executions of similar
problems. Nick’s class (//'€) describes problems that change complexity from polyno-

mial to logarithmic when leveraging an arbitrary amount of parallel resources [9].
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Figure 2.3: Historic models of parallel computation. The first era is characterized by

a common bus among all processors. The se

cond era addresses concerns of message

passing in a clustered environment where memory is considered to be distributed. All

third-era models contain a description of a m

emory hierarchy or the behavior thereof.
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PRAM CREW PRAM QRQW PRAM
P P P <—L
P : i
i o L o) L2 o

Figure 2.4: Selected manifestations of PRAM models. The processors (shown in darker
grey) all access the data over a single bus. On the left, the original PRAM model (repre-
senting CRCW PRAM) is shown. In CREW PRAM (middle), writing to RAM is modeled
to be exclusive to ensure data correctness when multiple processors access it. On the

right (QRQW PRAM), congestion and bus limitations are modeled with a queue.

2.2.1 Shared-Bus Era

The first era of parallel computation models describes the dominating shared-bus sys-
tems of that time. Multiple concurrent RAM processors execute unit-cost instructions
on commonly shared memory in lockstep fashion (all parallel execution steps happen
synchronously) [100]. This quite accurately describes PRAM, the most popular model
of this era (see Figure 2.4) [25].

The PRAM model was later enhanced by describing its memory read (R) and write (W)
properties. The concurrent read/concurrent write(CRCW) PRAM model, for instance, al-
lows all processors to simultaneously access a certain memory cell [74]. The additional
letters >E« for exclusive access behavior, >O« for owning behavior, and >Q« for queued

behavior can be found, which characterize the PRAM access [51].

For asynchronous execution, APRAM [28], asynchronous PRAM [56], and XPRAM [93]
remove the lockstep property and introduce synchronization steps with zero costs.

Queued shared memory (QSM) as well as the queuing property of memory accesses (Q)
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allow to simulate congestion of the shared bus [101]. Hierarchical behavior is achieved
in the variants YPRAM [93] and HPRAM [63], where partitioning instructions allow
for simulating multiple PRAM subunits inside the machine. These subcomputing units

communicate among each other with increased costs, described by inefficiency factors.

There exist extensions considering memory access latencies (LPRAM) and bandwidth
information (BPRAM) [3]. These can be applied when the application is especially
bound by one of those properties. Many PRAM models can be simulated to assess

costs for the innermost and costly parts of algorithms.

PRAM can be found in the later eras as well. BSPRAM, for example, fuses bulk syn-
chronous behavior with the refinements of concurrent memory accesses [130]. Still,
PRAM with its singular memory space is what programmers might consider first be-

cause of its simplicity and applicability on current hardware.

2.2.2 Cluster Era

The second era of parallel computation is characterized by distributed memory and
moderately slow interconnects (such as ethernet networks), both representing the clus-
ter supercomputers apparent at that time. Together with the idea of clusters, message
passing became part of the models. Notable representatives are bulk synchronous par-

allel (BSP) [132], LogP [44], and their variations (see Figure 2.5).

BSP can still be considered the most suitable model for analyzing work distribution
problems of parallel processors. In BSP, a concurrent section is executed by multiple
processors. The processors then wait at a global barrier to resynchronize for commu-
nication, which is carried out in a point-to-point fashion. Lastly, a global synchroniza-
tion barrier is passed by all threads to begin a new round of concurrent computation.
These three steps form a so-called superstep of computation. Performance hereby de-

pends on the slowest processor in terms of execution and the communication phases.



2.2. Three Generations of Parallel Performance Models 15
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Figure 2.5: BSP and LogP. For BSP (left), a concurrent section of computation is fol-
lowed by communication among the processing units. Each process then stops and
waits at a common barrier for resynchronization. All substeps combine to a so-called su-
perstep. LogP (right) describes properties of messages among processors, here marked
in darker grey. A fixed latency for sending messages is assumed in this model. Ad-
ditionally, the costs of creating the message (overhead), and the channel-specific gap

between messages describe the whole communication.

Conversely to costs, the loss of parallelization potential can be determined by summing

up the waiting time for synchronization and communication.

A common practice to overcome these losses is work stealing, which can either start di-

rectly at the beginning of the parallel section or when the first processor goes idle [16].

LogP can be seen as the asynchronous counterpart of BSP [44]. Four parameters de-
scribe computation among processors: latency L, overhead o, minimum gap between
messages g, and the number of processors P. In their work, the authors of LogP show
how algorithms like prefix sum, fast Fourier transform (FFT), and LU decomposition can

be modeled and improved with the help of LogP.
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hierarchy transition
[ cost functions

Figure 2.6: Hierarchical models. In the third generation of models in parallel compu-
tation, memory accesses across the increasingly complicated levels of caching hierar-
chies became important. Cost functions f,, ,(x) that describe hierarchical transition
costs from level m to level n and depend on the memory location x of the data can be

found in most of these models.

2.2.3 Hierarchical Era

With an ever-increasing speed gap between instruction execution and operand fetch-
ing, the role of caching in computer systems increased. Alongside this development,

models that embrace memory hierarchies evolved [6].

The models RAM(h, k) [142] and UPMH [5] both assume multiple caching hierarchies
that have access costs ¢ = f(x) depending on the accessed memory location x. Because
the ratio between cache hitting and cache missing cannot be formulated in simple
parameters, complex functions are needed to describe them. These formulas depend

on the temporal as well as the spatial locality of the memory accesses.

There are LogP representations of caching hierarchies, for instance, Memory LogP [24],
where caching is modeled by message passing between the hierarchical cache layers.

However, neither access patterns nor cache affinity are considered with Memory LogP.
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2.3 NUMA Cost Models

Having presented key terms and the history of models of parallel computation, this sec-
tion outlines cost models specific to non-uniform memory access architectures. Then,

this section motivates how these models form a new class of cost models.

2.3.1 NUMA Architectures

The development of non-uniform memory architectures can be seen as an answer
to the ever-increasing need for computational power. While the gap between perfor-
mance of CPUs and their associated memory modules increases [46], even more cores
are added to processors, which poses an even higher demand on memory bandwidths.
NUMA architectures can be seen as a response to this demand. By associating mem-
ory via multiple, distributed memory controllers to local CPUs, more bandwidth can

be achieved through parallelized local accesses.

Reaching all memory regions from the individual processors of the system is possible
with the help of interconnects, which form a network among the processors. This archi-
tecture results in at least two classes of accesses: local, fast accesses through the CPUs’
dedicated memory controllers and slower, remote accesses through the interconnect
network. Because of the differences in access latencies, the processor experiences dif-
ferent memory regions with different access behaviors. This breaks the assumptions
of the RAM model (where memory accesses had unit costs for all processors alike)
and explains the »non-uniform« in the architecture’s name. An exemplary, resulting
NUMA topology can be seen in Figure 2.7. Note how this topology cannot be seen as

a hierarchical tree structure but rather as a graph of executors and memory locations.

To allow programmers to manage data in a unified and contiguous fashion, cache co-
herency protocols are adapted to this new architecture. While cache coherency was

maintained inside processors before (managing consistency among multiple layers of
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Figure 2.7: CC-NUMA. Multiple processors form so-called NUMA nodes comprising
individual, associated caching hierarchies. The last-level caches (LLC) of these nodes are
connected with each other to enable the data transfer and to uphold cache coherency
for the complete system. Caused by cache coherency and the system-wide access to

data, main memory appears as being contiguous.



2.3. NUMA Cost Models 19

caches), with NUMA, it becomes the responsibility of the overall computing system
to ensure data consistency during program execution. Popular mechanisms for cache

coherency are directory-based and snooping-based protocols [13].

Non-uniform memory architectures can be seen as the answer to high memory access
costs compared to the costs of computations on the data itself [127]. Because of this,

many models in the research field focus on memory accesses as their main cost factors.

Note that when optimizing costs in such highly parallelized hardware and software en-
vironments, one has to first solve shortcomings in the single-thread behavior. Before
it is worth consulting NUMA models for cost analyses and performance optimizations,
programmers should care about more fundamental concerns such as single-thread per-
formance, efficient locking, and communication mechanisms in addition to an optimal

work distribution among processors [37].

2.3.2 Representative NUMA Cost Models

This section presents an overview of related work in the field of cost models specifically
designed for NUMA architectures. Often times, these models bear memory access costs
as their key factors [84, 21, 53]. This thesis summarizes these approaches and finally
proposes properties a future model for the NUMA era has to fulfill.

Braithwaite et al. describe a machine-based model that is built upon prior measure-
ments on the hardware, which determine bandwidth and latencies of the NUMA in-
terconnects [19]. In their exemplary study, the authors identify equivalence classes
among cores. With these classes at hand, the authors are able to describe interconnect
topologies numerically. This information, fused with measured bandwidth and laten-
cies, is then used to evaluate the model on exemplary benchmark workloads (Graph500,
Linpack, NPB-IS). Depending on the memory cost affinity of each workload, the au-
thors validate the applicability of their cost model.
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Figure 2.8: kNUMA. Schmollinger et al. model nested BSP behavior via tree-
interconnected nodes (shown in dark grey) with depth x [111]. While an internal BSP
behavior can be found inside the nodes, an additional, similar behavior is modeled for

internode communication.

Schmollinger and Kaufman propose a model named kNUMA, which is aimed at clus-
ters and SMP machines [111]. The model builds on top of the concept of communication
in BSP, extending it through submachine functionality (see Figure 2.8). kNUMA can
be thought of as a k-deep tree hierarchy of processors. Although this approach seems
to adhere to hierarchical models, their proposed model also supports a ring topology.
On a rather theoretical level, the authors build a cost function that integrates subpro-
cessor communication costs into global superstep costs. While they outline that BSP is
not directly transferrable to parallel SMP machines, the authors’ model works well for
problems with global notifications similar to MPI's gather and scatter functionality

via the tree or ring structures [117].

In his work, Forsell proposes a model for converting workloads with low thread-level
parallelism from NUMA to a PRAM counterpart [52]. The paper puts emphasis on
hiding latencies by grouping processors to act on a single state, resulting in a PRAM
NUMA model. Because no actual cost function yet a rather conceptual machine model

is presented in this paper, the work can only be considered a theoretical contribution.



2.3. NUMA Cost Models 21

The work of Zhang and Qin models NUMA interconnects as switching networks [140].
With the analogy to resistors in a network of similar topology, the authors predict
access times for the matrix multiplication example. Although their paper is a rather
early contribution, Zhang and Qin are able to classify and isolate problems such as

congestion both in the model and in the evaluation on their early NUMA machines.

Further work putting emphasis on memory access costs can also be seen to be closely
related to this thesis, since NUMA models aim to tackle memory-bound problems. In
their work, Ma et al. develop a »memory access model for highly-threaded many-core
architectures« [84]. They describe how fast context switching enables memory hid-
ing in modern multi-threaded environments. Their model TMM (threaded many-core
model) is validated against four shortest-path algorithms, where it is able to predict
performance well. While the authors only use two levels of hierarchy, which is not
always be the case in NUMA systems, the extension to complex networks comprising

multiple hierarchies is possible and discussed in the authors’ outlook.

Byna et al. present formulas and an evaluation of memory accesses [21]. With a handful
of parameters describing the topology or memory hierarchy and additional parameters
characterizing data accesses, they are able to foresee the costs of memory accesses for

the widely used matrix transposition algorithm.

In other works, parameters of memory access cost models are studied. Wu et al. exam-
ine the influence of memory locality for the example of compression algorithms with

their memory profiler LEAP [139].

In conclusion, all presented works pursue the formulation of models in the context
of NUMA. Some of the NUMA cost models are extensions to legacy models such as
BSP and RAM. The majority of related work focuses on evaluating their models on

examples, thus verifying their applicability.
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2.3.3 NUMA Cost Models as a New Class of Cost Models

This section discusses why NUMA cost models should be seen as a new class of models

instead of considering them part of the third-generation (hierarchical) model category.

It is of high importance to point out that NUMA architectures do not adhere to existing
hierarchical models, which were presented in Section 2.2. NUMA is not just an addition
of a »virtual« caching hierarchy of local memory accesses within the generally more
costly global memory space. If there were such a virtual caching behavior, it would
surely be an argument for the applicability of hierarchical models as presented in the
Chapter 2. However, this assumption misses important properties of the memory in
NUMA systems. While caches can be seen as copies of values that originally reside in
main memory, the memory regions in NUMA are not copies. They are singular (the
only) instances of information distributed in partitions and connected via a graph of
interconnects [62]. Moving or copying this data is not implicitly done by hardware

during calculations but comes at a cost.

For the hierarchical era, there were only few possibilities for processors and operat-
ing systems to influence the placement of data in the caches directly.! However, such
placements can be achieved with memory in NUMA regions. In NUMA systems, the
facilities of operating systems and libraries can directly steer memory allocations and
movements across the system. The API provided through libnuma enables program-

mers to explicitly place data, for instance [76].

Earlier, when using caching hierarchies, programmers had to rely on their experience
and their knowledge about the hardware architecture when formulating code to keep
data inside the caches. Only when stated implicitly in the code, memory was local with
respect to execution time and memory space. In contrast, NUMA models might assume

certain data placement policies (for example, interleaving, local, and first-touch, which

'In x86 assembly, there exist instructions for cache eviction, prefetching, and cache bypassing. How-
ever, these are just suggestions to the CPU.



2.4. Proposals and Limitations for Developing NUMA Cost Models 23

are offered by the Linux kernel) for their cost computation [17]. NUMA models could

either rely on optimal data distribution or determine the costs of inefficiencies therein.

While cache hit probability depends both on temporal and spatial locality, NUMA does
not benefit from temporally close memory accesses. For caching, only the hierarchy
level is important (all data residing in L2 caches behaves similarly), yet in NUMA, the

exact location of data in the topology comes to play when determining costs.

Furthermore, memory accesses can be seen as truly concurrent in the case of NUMA.
Continuous accesses were bound by a single memory controller’s bandwidth in the
hierarchical, 3rd-era models before. NUMA architectures, however, consider both pos-
sibilities: multiple simultaneous, local accesses—and therefore truly concurrent reads
and writes—or remote accesses culminating in one or more interconnects, which re-

sults in congestion and link saturation.

In the future, memory and processing might be distributed heterogeneously. Then, es-
pecially the costs and loss savings of moving data for either faster memory accesses or
accelerated computation become crucial to consider. With the prospect of future het-
erogeneous architectures scaling up to core-to-cloud systems where worldwide, highly
specialized execution can be envisioned, these data movement and scheduling consid-
erations become imminent [2]. For all the aforementioned reasons, this thesis distin-

guishes NUMA cost models from the prior hierarchical, 3rd-era cost models.

2.4 Proposals and Limitations for the Development of
NUMA Cost Models

In this section, multiple ideas are proposed to be considered when continuing the de-
velopment of NUMA cost models. This section discusses why it is impractical to deduce
costs with a function purely obtained from prior measurements. In the end, a summary

is given on the practical applicability of cost models for NUMA performance analyses.
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2.4.1 Topology Description

Existing systems mentioned earlier modeled the interconnects through either abstract
behavior or a hierarchical memory layout. However, for determining precise costs, it
is relevant to numerically capture the exact topology of the NUMA interconnects, as
argued in Section 2.3.3. This section makes a proposal for such a numerical description

while pointing that the existing SLIT tables are not suitable in all cases.

Topologies describing the hardware are abstract representations of the means of com-
munication that exist between the processors. In both of the historical eras of clusters
as well as hierarchical models, certain communication parameters were used as well.
For the cluster era and its characteristic LogP and BSP message passing approaches, be-
havioral aspects of the network between processors (or cluster nodes) were sufficient
for describing the whole topology. Latencies and bandwidths together with properties
such as the gap between messages formed the parameters of those approaches. In the
hierarchical memory era, even parameters such as cache sizes and cache line widths

could be found in the models.

In both of these eras, congestion and the exact link topology were not considered,
though. For clusters, the network (often ethernet) was so slow that it was latency-
bound in almost all cases. For the hierarchical age, the tree structures never exposed
complex contention, since all links were used independently or contended about a

singular path to memory. The spatial aspect of such topologies was not considered.

For a NUMA model, both latencies and bandwidths should be described in terms of sin-
gle variables anymore [141]. Instead, adjacency matrices need to describe connected-
ness as well as topological information as they would for a graph problem. The original
topology in the form of a graph can be reconstructed through adjacency matrices with-
out loss of information. It is important to admit that there is no trivial mathematical

method that can express the contention of links. Bandwidths, both on the intercon-
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Figure 2.9: Topology description. In this example, a multi-hop network is modeled.
Data flow in a system can be represented using adjacency matrices. As long as it is
possible to reconstruct the existing topology, no information is lost. In contrast to

SLIT tables, topological information is preserved with this method.

nects and the dedicated memory controllers, should be modeled as contingents that

are reduced upon usage. This is sketched in Figure 2.9.

Although current systems reveal latency information (only) via the ACPI system local-

ity information table (SLIT) [79], this method is suboptimal for several reasons.

First, latencies and bandwidths(maximum achievable throughput) should not be con-
sidered the inverse of each other [124]. While this might be valid for high-throughput
streams, when accessing single values remotely, latency is not inverse to bandwidth.
On the other hand, when interconnects are affected by congestion, the last-level cache
usage is high, and memory controllers are flooded with local and remote requests. Then,
latencies can become much higher than the inverse of the denoted bandwidth. Thus, it

is crucial to note both latencies and bandwidths for each possible path to memory.

Second, SLIT does not denote adjacency information but instead the combined laten-

cies and bandwidths along the shortest paths from point to point. This is not a problem
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for fully connected graph topologies, which allow for point-to-point connections only.
Yet, if data routing were done in a multi-hop fashion in the future, summed distances

would not help in determining shortest paths or cost.

Third, the table does not incorporate information about whether the connection is full-
duplex or whether it suffers from cross-talk behavior. This information is crucial when

exchanging information bidirectionally, though [95].

2.4.2 Program Execution Phases

Since program behavior can change over sampling time, modeling phases might be a
good strategy for creating a NUMA model. In each phase, different machine proper-
ties might limit the program’s efficiency. Especially for problems typically solved on

NUMA hardware, there are many memory allocations.

As a proposal, this thesis suggests to analyze different phases of a program exeuction
based on its memory footprint. In this way, the phases of ramp-up and calculation can
be distinguished, which are typical of high-performance computing [113]. Previous
models did not consider these program phases and often times ignored initial resource
allocations for complex calculations. This thesis proposes to at least split the ramp-up

and calculation into to two distinct phases to consider when optimizing performance.

Phasenpriifer, a tool that automatically detects the ramp-up and the calculation phases,

is later described in Section 4.2.

2.4.3 Creating NUMA Cost Models Based on Empirical Observations

Aside from creating theoretical models, cost functions could also be found by learning
from prior empirical observations. While this approach might report numerical costs

conveniently, this section shows that purely learning such functions is inadvisible.
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Figure 2.10: The cost model landscape. A cost function is modeled from multiple input
dimensions. Note that the figure shows only two of the possibly hundreds of input

parameters of such a function.

The cost functions mentioned before represent a mapping from a multi-dimensional
space of environment parameters (forming a cost model landscape) to multiple cost val-
ues. This landscape is highly complex because of the interplay between mutually influ-
encing input-output relations. Analyzing and operating on such a high-dimensional
space is considered difficult and often referred to as the curse of dimensionality [11].

An illustration of how such a landscape could look like is shown in Figure 2.10.

Techniques to learn these mappings based on samples are plentifully found in the ar-
eas of machine learning and regression, yet this thesis argues that these learning tech-
niques are not able to reproduce the landscape without an enormous amount of sam-
ples. Minimizing least squares in a linear fashion might give a good approximation
of the landscape yet results in hyperplanes only. Though hyperplanes are a first ap-
proximation of the problem, they do not resemble the actual landscape but result in an
averaged gradient only. Note that samples, when understood as vectors, must be pair-

wise linearly independent. This implies that if there is a dimension that is constant, the
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hyperplane cannot be determined correctly for all dimensions. Additionally, the sam-
ple count must at least match the number of dimensions of the problem space, that is,
rank(input + output). There exist methods for approximating higher-order manifolds

(non-planar landscapes), yet they require even more samples as an input [10].

Although there may be many input dimensions (describing code, hardware, measured
indicators, and the topology along all their properties), pairs of dimensions exist that
depend on each other and thus overlap in their influence on the costs. As an example,
the numbers of instructions and cycles are correlated fairly linearly. Since for all in-
structions, at least one and at maximum a specific worst-case number of cycles have

to be spent, there exist upper and lower bounds for this linear relationship.

Mechanisms such as principal components analysis (PCA) [73] that leverage the most
prevalent eigenvectors of the measured data are able to eliminate such linear depen-
dencies. Since only linear dependencies can be extracted in this fashion, PCA cannot
be of much help in the case of more complex interdependencies. Figure 2.11 shows

both space sampling and an example of two correlated indicators for PCA.

Overall, this thesis suggests to further develop cost models incorporating numerical
data yet does not recommend learning cost functions in this way. Understanding the
mechanisms and reproducing them via simulation or even roughly-formed models is

much more feasible in this regard.

2.4.4 Limitations of the Applicability of NUMA Cost Models

To make precise cost predictions with respect to the ever-increasing hardware com-
plexity, NUMA cost models incorporate more and more parameters. Unfortunately,
complex behavior such as the topological description cannot be described with few
numerical parameters. If there are many parameters, users are obliged to invest much

time in obtaining them in order to determine the costs. Even functions have to be con-
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(b) PCA. Although many counters exist, their
data does not span the whole measurement
space. Here, instructions (x axis) and cycles
(y axis) are shown. Data was sampled from
300 1-second intervals of the rather complex
browser program Firefox. Choosing only one
axis along the regression would still explain
more than 90 % of the variance in the mea-

sured data in this case.

The problem suffers from the curse of di-

mensionality. To add more indicators, which help to explain more of the cost, a higher

number of samples would be needed to describe the cost landscape. Conversely, cor-

related parameters could be fused by projecting their data onto their eigenvectors.
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sidered as inputs to models. This makes it hard for engineers to understand and apply

modern models of parallel computation when analyzing performance.

At the same time, cost models are very theoretical and often only available in textual
form [114]. This makes it impossible for computers to automatically determine costs
with these cost models. There are only few simulators and actual applications that
compute costs based on these complex cost models. In Section 2.6, this thesis addresses
these shortcomings by proposing a strategy for assessing performance that is based on

the practically available performance indicators, measured at runtime.

2.5 Extracting Costs from Program Code

Instead of employing cost models, programmers may perform static code analyses on
their software implementation. This section describes common methodologies when
it comes to extracting costs from program code only in an automated fashion. How-
ever, with the current state of the presented tools, such analyses are not applicable to

moderately complex programs.

2.5.1 Abstract Interpretation and Symbolic Execution

The execution costs of a program are first and foremost dominated by the executed in-
structions. Because of this, an analysis of the program’s code should be an important
information source for creating accurate cost functions. In practice, however, deter-
mining costs from code is very complex and not feasible with current computational
resources for reasonably sized sequences of code [110, 55]. This thesis explains two ma-

jor methods for static code analysis: abstract interpretation and symbolic execution.

Abstract interpretation aims at extracting a specific property of the program by neglect-
ing non-relevant information in the process. This might be the case when just the flow

of the variables and not their contents are considered for proving a specific property
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of a program. This is famously used in compilers, which optimize out variables that are
provably not influencing the end result. Another case are the signs of numerical val-
ues, which can be deduced for operations such as multiplications or squares without
having exact knowledge about their operands. In this way, some information about

the CPU’s status register can be extracted from the code beforehand [43].

At the same time, abstract interpretation is bound by Rice’s theorem, which forbids
simple property deduction in programs [104]. The theorem states that for any non-
trivial property of partial functions, no effective method can decide if the program
under test computes the function such that it satisfies this property. This theorem holds

for all methods of static code analysis.

Conversely to abstract interpretation, symbolic execution aims at covering all possible
execution paths by replacing the variables’ actual values with symbols. This method is
thus able to determine various properties of these symbols, even backwards in time [75].
For example, dead code paths can be found with this method. Symbolic execution can
be performed either fully (on all code paths) or by sampling code paths that are heuristi-
cally identified as most probable. In the area of software verification, concolic execution

is a popular representative symbolic execution method [59].

2.5.2 Code Representations

When analyzing programs, different forms of one and the same behavior can be stud-
ied along the different levels of code abstraction (for instance, C++, IR, and assembly).
In the exemplary case of a C++ program, determining abstract costs is hard yet fairly
attributable to variables and lines of code. Analyzing the Intel x86 assembly of the same
program might yield better results in terms of cost precision. However, optimized as-
sembly lacks the connection between costly instructions and specific lines that caused
them, since multiple instructions represent multiple lines of code and vice versa (for

instance, fused mathematical expressions).
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A viable option for analyzing smaller program sections is the LLVM intermediate rep-
resentation (IR) [80]. With IR, a translation of code into the form of static single assign-
ments (SSA) is done [45]. In the static single assignment form, variables are defined
exactly once before the first usage. Static analyzers such as Klee offer functionalities
to prove constraints that can also be upper bounds for execution runtime [22]. There
even exist so-called superoptimizers such as Souper [102], which find shortest possible
instruction sequences for a given piece of code. Both Klee and Souper make use of

Clang’s intermediate representation in their analysis steps.

2.5.3 Limitations of Static Code Analysis

Unfortunately, as mentioned in the introduction to this chapter, static code analysis is
not really applicable for assessing the performance of complex real-world programs.
The exploding number of execution paths renders it nearly impossible to find assump-
tions and constraints for larger programs. As a practical example, consider even the
comparably small piece of code below:

while (n != 1)

n=¢(n%2==20) 7?2 (n/2): (3 *n)+1;

Despite its length, this code snippet’s runtime depending on n cannot be determined
universally. This code represents the Collatz conjecture, proven in 1972 by Conway et al.
not to be decidable [30]. Another simplistic counterexample is the following:

if (md5(x) == Oxdeadbeef)

x.f0O;

Because inherently, the MD5 hash function cannot be reversed efficiently, the informa-

tion whether or not the member function () is called on x is very hard to obtain [105].

In general, there exists an unavoidable problem to create exact universal runtime cost

functions based on code only. If there was a cost function applicable to all programs, it
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would solve the Halting problem [31]. This is a contradiction and thus, such a universal

function cannot be formulated.

Caused by all mentioned theoretical constraints, this thesis puts less emphasis on static

code analysis and focuses on information retrieved from actual program runs instead.

2.6 A NUMA Performance Strategy Based on Hardware
Event Counters

This thesis introduces a new NUMA performance strategy based on measurements
made during prior program runs. In this section, this two-step strategy is developed,
which enables portability across physical systems. This strategy circumvents impracti-

cable static code analyses by using low-level performance indicators as an indirection.

2.6.1 Hidden Variables and Performance Indicators

Inside a computing system, there are parameters that can be observed and others that
cannot. Hidden variables are entities of the system’s mechanism that cannot be deter-
mined directly. Software engineers know that the branch predictor exists in modern
CPUs, for instance. Yet, they cannot know about the CPU’s internal state, which is

influenced by prior events and will also affect the program’s runtime behavior.

Indicators, on the other hand, are observable values in the system’s mechanism. If they
relate to costs, they are referred to as performance indicators [26]. Through hardware
counters, CPUs reveal a part of their internal hidden state. When assuming a functional
dependency between input parameters, performance indicators, and costs, a strategy

using low-level hardware counters for program analysis can be devised.

One example for such performance indicators is the instruction count of a program run.

Given the costs of each instruction in CPU cycles, the overall number of clock cycles
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may be estimated. Assuming a fixed clock frequency, the costs in execution time may
in turn be deduced. This example illustrates how all steps require knowledge (cycle
costs of instructions and CPU frequency) about the causal link among indicators and
finally from indicators to costs. At the same time, this method introduces simplyfing
abstractions (worst-case, fixed clock cycles are assumed), which blur the resulting costs.

The interplay of all these key terms was shown at the beginning in Figure 2.1.

2.6.2 A Two-Step Strategy for Analyzing Performance

With the massively available number of hardware indicators as input parameters (see
Chapter 3), a new strategy for performance optimization is developed. A classic perfor-
mance model might determine costs in a single step. This monolithic approach needs
to translate all input parameters (concerning the program’s code, its configuration, and
so on) to actual costs. This thesis, however, proposes a two-step performance deduc-
tion strategy consisting of a code-to-indicator and an indicator-to-cost analysis, as seen

in Figure 2.12. As discussed later, this split increases versatility and portability.

First, a code-to-indicator analysis is performed. As this step resembles most aspects of

static code analysis, it can be considered complex and infeasible for large code bases.

Yet, for many programs, measurements with common workloads can be perfomed be-
forehand. First, programmers would measure small yet typical workloads. Based on
these measurements, programmers could extrapolate performance indicators by con-
tinuously increasing the workload sizes or measuring varying workloads [60]. Alter-
natively, they could transfer well-known hardware performance indicators from a dif-
ferent computer system to simulate the performance behavior on new hardware. In

this way, the infeasible direct code-to-cost deduction can be circumvented.

The second step consists of an indicator-to-cost analysis. Performance indicators act

as the interface between the two analysis steps hereby. The indicator-to-cost analysis
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Figure 2.12: Classical and proposed strategy. By selecting performance indicators as an
intermediate step, the proposed strategy overcomes several issues. Static code analysis
can be bypassed by measuring hardware counters and either extrapolating them for

different workload sizes or transferring them between physical systems.

can be considered less complex compared to the first step, since hardware performance

indicators relate to costs much more directly.

Even if some indicators are not directly connected to execution time performance,
some of them—measuring wattage, for instance—can provide valuable insights about
the system’s hidden variables such as thermal conditions. In this example, knowledge
about thermal conditions helps estimating the costs, because clock frequencies might

correlate with thermal conditions [14].

Hardware vendors could perform indicator-to-cost analyses for all their hardware sys-
tems. Before deciding upon new hardware, enterprises and researchers could finger-
print their applications’ key indicators as well as their performance. The vendors’ mod-
els could then provide the customers with a more precise speed-up estimation, without

ever having to run the program on new hardware.
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Limitations—Input Selection, Sampling Bias, Multiple Comparisons Problem

This thesis suggests to consider all available hardware performance indicators as an
intermediate phase for inferring costs yet aims at ensuring portability among machines.
Because not all machines offer the same performance indicators, a selection of fairly
common ones is necessary to begin with. Additionally, not all performance indicators

are equally important, and some might even be redundant.

Because the strategy employs indicators actually related to the problem’s scaling be-
havior, a further selection needs to be performed. In this case, the selection of a subset
of indicators might diminish the strategy’s expressive power, thus reducing its flexibil-
ity and the soundness of the performance analysis (sampling bias) [137]. As a response,
this thesis later introduces an event selection program called EvSel (see Section 4.1). Of-
ten times, performance indicators are zero or do not significantly change within the
execution of a specific program. These candidates should be considered for removal,

along with other uncommon indicators only existing on a specific platform.

Conversely, when correlating a lot of input parameters to end costs, the sheer amount
of parameters might reveal some seemingly well-fitting correlations. However, these
correlations might not represent actual interdependencies but are instead caused by
the high statistical possibility resulting from many measurement values. This problem
is known as the multiple comparisons problem (or the multiple hypotheses problem) and
states that if researchers just add more and more data to a data set, at one time, they
will eventually find correlations [66]. To tackle these problems, statistics uses methods
such as Bonferroni correction, which requires more samples when the possibility of a
multiple comparisons problem exists [8]. Although this might be a candidate for future
work, the tools presented in this thesis do not react to this issue, currently. Users should

be aware of this fact when employing these tools to investigate performance.
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3 Measuring Hardware Coun-
ters on Multiple Platforms

This chapter focuses on the technical foundations and related work for the tools later
introduced in Chapter 4. After describing existing performance measurement utilities
of CPUs, performance counters of different hardware platforms are discussed in detail.

This chapter aims at giving practical usage examples for all mentioned event counters.

In the second part of this chapter, existing tools for performance optimization are pre-
sented, which build upon these low-level performance counters. Some of these tools
allow for measuring counters solely, while others process this information further to

allow for a detailed performance analysis of programs.

3.1 PMU Setups and Performance Counters

This section analyzes the performance measurement units (PMUs) of different hardware

vendors. With each vendor, more sophisticated features are introduced and explained.

Performance counters are the lowest-level performance indicators provided by the PMU.
They are measured in dedicated registers with very low overhead and are thus op-
timal for fine-grained performance analyses. Although the Linux measurement tool
perf lists many performance counters by default, it can measure even more counters
through raw registers by accessing the hardware directly. These counters are addressed
with hex codes to the model-specific control registers (MSRs) of the CPU. To obtain all

these hex codes for raw counters, the performance library 1ibPAPI can be utilized.
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supported hardware platforms

x86, x86_64 (Intel, AMD)

ARM

MIPS

Intel Itanium II, Montecito, Montvale
IBM POWER4, 5, 6, 7, 8

IBM PowerPC970, 970MP

Table 3.1: Selected hardware platforms supported by 1ibPAPI [99]. The first two rows
are supported via the perf_events driver of the Linux kernel. Itanium is supported via

Perfmon2. IBM’s platform-specific counters are obtained using the perfctr interface.

3.1.1 Obtaining Raw Event Counters with 11bPAPI

The performance application programming interface (PAPI) is a source of raw event
counters that is frequently updated [92]. PAPI offers support and portability for many
platforms ranging from IBM System/390 processors to up-to-date IBM Power8 and In-
tel Skylake architectures. PAPI does so by employing the model-specific registers via
the msr-tools kernel module for Linux [32]. Furthermore, graphics and accelerator
performance (for some architectures, power consumption only) can be measured for
Intel’s Xeon Phi and Nvidia’s Tesla and Kepler architectures via their drivers and CUDA
interfaces, respectively [42, 41]. With PAP], it is even possible to measure the Infini-
Band interconnect performance. In this case, the events are queried via the system’s
sysfs under /sys/class/infiniband/. Overall, PAPI can be seen as an integrator for
many event sources. Selected and supported platforms for the Linux operating system

family are shown in Table 3.1.

1ibPAPI further offers abstractions for vendor-specific event counters across the plat-

forms. This enables comparability and portability. Because the project is supported by
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all major hardware vendors, its information quality can be considered very high. Many

auto-optimization tools and scientific tools base their measurements on PAPI [20].

On many hardware platforms, the concepts of event codes, unit masks, and further
event modifiers are found. Event codes describe the general class of performance events,
whereas unit masks allow programmers to filter events by the location of their occur-
rences. Additional modifiers allow for specifying event properties such as inverted,
user-mode, kernel-mode, system-wide, or edge counting. All available event modifiers

are listed in the Linux sysfs under /sys/bus/event_source/devices/cpu/format.

1ibPAPI comes together with tools (which are named examples in the repositories)
that allow for exploring the options of the available counters. As a remnance of the
discontinued perfmon2 project, libpfm4 is one major source for this type of event in-
formation within PAPI. Below, an output of showevtinfo, which can be found in the

libpfm4 examples, is shown for determining all available event sources.

Detected PMU models:

[ix86arch, "Intel X86 architectural PMU", 7 events, 1 max encoding, core PMU]
[perf, "perf_events generic PMU", 80 events, 1 max encoding, 0S generic PMU]
[hsw, "Intel Haswell”, 73 events, 2 max encoding, core PMU]

[rapl, "Intel RAPL", 3 events, 1 max encoding, uncore PMU]

[perf_raw, "perf_events raw PMU", 1 events, 1 max encoding, 0S generic PMU]

Listing 3.1: Part 1. Exemplary output of 1ibpfm4’s PMU source detection. Although
multiple PMU sources are identified in the system, their events might overlap. Note the
fourth entry where the running average power limit (RAPL) as an energy measurement

facility is listed additionally.

Next, an exemplary event code is shown with its umask configuration options and

modifiers, as determined by showevtinfo.

IDX : 218103839

PMU name: hsw (Intel Haswell)
Name : L2_RQSTS

Equiv : None
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Flags : None
Desc : L2 requests
Code : 0x24

Umask -00: ©x21: PMU: [DEMAND_DATA_RD_MISS]: Demand Data Read requests that miss L2
Umask-@1: ©x41: PMU: [DEMAND_DATA_RD_HIT]: Demand Data Read requests that hit L2
Umask -02: ©x22: PMU: [DEMAND_RFO_MISS]: RFO requests that miss L2

Umask -03: ©x22: PMU: [RFO_MISS]: Alias to DEMAND_RFO_MISS

Umask -04: 0x42: PMU: [DEMAND_RFO_HIT]: RFO requests that hit L2

Umask -05: ©@x42: PMU: [RFO_HIT]: Alias to DEMAND_RFO_HIT

Umask -06: ©x24: PMU: [CODE_RD_MISS]: L2 misses when fetching instructions

Umask -07: ©x27: PMU: [ALL_DEMAND_MISS]: All demand requests that miss the L2
Umask -08: ©@x44: PMU: [CODE_RD_HIT]: L2 hits when fetching instructions, code reads
Umask -09: 0x30: PMU: [L2_PF_MISS]: Requests from the L2 prefetchers that miss L2
Umask-10: @x3f: PMU: [MISS]: All requests that miss the L2

Umask-11: 0x50: PMU: [L2_PF_HIT]: Requests from the L2 prefetchers that hit L2
Umask-12: @xel: PMU: [ALL_DEMAND_DATA_RDJ]: Any data read request to L2

Umask-13: @xe2: PMU: [ALL_RFOJ: Any data RFO request to L2

Umask-14: ©Oxe4: PMU: [ALL_CODE_RD]: Any code read request to L2

Umask -15: @xe7: PMU: [ALL_DEMAND_REFERENCES]: All demand requests to L2

Umask-16: @xf8: PMU: [ALL_PF]: Any L2 HW prefetch request to L2

Umask-17: @xff: PMU: [REFERENCES]: [default]: All requests to L2

Modif -00: ©@x@0: PMU: [k]: monitor at priv level @ (boolean)

Modif -@1: @x01: PMU: [ul: monitor at priv level 1, 2, 3 (boolean)

Modif -02: @x@2: PMU: [e]: edge level (may require counter-mask >= 1) (boolean)
Modif -03: @x@3: PMU: [i]: invert (boolean)

Modif -04: 0x04: PMU: [c]: counter-mask in range [0-255] (integer)

Modif -05: ©x@05: PMU: [t]: measure any thread (boolean)

Modif -06: @x07: PMU: [intx]: monitor only inside transactional memory (boolean)
Modif -07: @x@8: PMU: [intxcpl: no count in aborted transactional memory (boolean)

Listing 3.2: Part 2. Output of a single event class description. One can see how the
event code denotes the general group (here, L2 requests) and how the so-called unit
mask describes all possible variants such as hits, misses, and prefetch requests. Lastly,

event modifiers are listed, which change the measurement properties of the counter.

Plain counters simply accumulate event occurrences that match the specified mask
and modifier configuration. When measuring a higher amount of events than there
are counting registers, tools like perf fall back to round-robin measurements. Round-
robin measurements (also called event cycling) can only be considered to be sampled

over time, since not all events are counted continuously.

More complex events exist (for instance, denoting branching information or program
counter status), which often times use more than one register to store information.

Some trigger an interrupt service routine (ISR) to write data to memory instantly.
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This thesis showcases event counters and special features of four major hardware ven-
dors in detail to give an overview of different performance counter capabilities and

their utility for performance evaluation.

3.1.2 ARM—Cortex-A8 and A9

In the most basic setup, ARM PMUs follow a general architecture of three registers, two
of them configuring the event and one containing the number of counted events [7].
Since the vendor’s business model is licensing CPU IP, ARM recommends PMU build-

ing blocks, which might be implemented by licensing companies to different extents.

The popular ARMv8 architecture incorporates one 64-bit-wide counter and up to 31 fur-
ther 32-bit-wide counters. The wider, 64-bit counter is dedicated for cycle counting
(cycles naturally amount to the highest numerical values). ARM guarantees counters
to act non-invasively (not influencing program execution), yet ARM does not guaran-
tee overall measurement accuracy. Thus, an inaccuracy of 5% has to be expected on
ARM systems [7]. This is caused by missing event validation facilities for speculative

execution, which can amount to an »unreasonable overhead,« according to ARM.

In general, all PMU counter registers can handle overflows. On ARMvS, the generic
PMUIRQ interrupt is triggered and an according overflow bit is set in the status register,
which can be queried in the interrupt service routine later. Events are only counted
depending on certain states of the CPU. If the PMU is disabled, no events are counted.
If the CPU is in hardware debug state or ARM security state, specialized bits enable or
disable counting. Additionally, all events can be filtered according to the execution level
(EL0 to EL3) of the ARM processor, which is similar to Intel’s better-known security ring
concept. Overall, ARM suggests 48 standardized events for their ARMv8 IP [7].

The following showcases how to access and measure the raw performance counters for

the newer Cortex-A9 CPU, which supports both the ARMv7 and ARMvS architectures
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depending on the model. For this purpose, 1ibpfm’s showevtinfo is used to provide the

hex codes of the registers, later used by Linux perf to measure the values.

~/papi/papi-5.4.3/src/libpfm4/examples$ ./showevtinfo

[...]

# _____________________________

IDX : 138412038

PMU name : arm_ac9 (ARM Cortex A9)

Name : DREAD

Equiv : None

Flags : None

Desc : Data read architecturally executed
Code : 0x6

# _____________________________

IDX : 138412039

PMU name : arm_ac9 (ARM Cortex A9)

Name : DWRITE

Equiv : None

Flags : None

Desc : Data write architecturally executed
Code : 0x7

# _____________________________

Coood

# _____________________________

IDX : 138412050

PMU name : arm_ac9 (ARM Cortex A9)

Name : JAVA_SW_BYTECODE_EXEC

Equiv : None

Flags : None

Desc : Software Java bytecodes decoded, including speculative (approximate)
Code : 0x41

# _____________________________

[...]

Listing 3.3: Three exemplary raw PMU events on a Cortex-A9-enabled Parallela board.

~/papi/papi-5.4.3/src/libpfm4/examples$ perf stat -e r@6,r07,r41 ls ~
papi

Performance counter stats for 'ls /home/christoph.sterz

601975 roé
261973 ro7
[ r41

0.009860732 seconds time elapsed
Listing 3.4: Exemple measurement of memory reads and writes using perf. Outputs for
raw registers, as obtained by libpapi in the listing before, show that about 2.3 times

as many data reads as writes happen. No Java bytecode is decoded, as expected for 1s.
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Note that for all architectures, the CPU counter accuracy depends on the thermal bud-
get of the respective CPU. The amount of jitter in all cycles depends on the aforemen-
tioned measurement inaccuracies as well as the fluctuating CPU clock frequency. Some
vendors, such as Intel, react to this by offering so-called ref cycle events that stem from

an independent, non-scaling clock.

3.1.3 AMD—Family 15h (Bulldozer)

Compared to ARM, AMD provides many more counter events, which can be special-
ized even further. Modern AMD Family 15h processors (code-named Bulldozer) in-
corporate up to six available 48-bit-wide hardware counters with about 100 available
events, depending on the model [1]. AMD calls these events performance counter events,

which are counted for the core and northbridge sections separately.

Northbridge events describe additional interaction with I/O peripherals and buses. By
leveraging these events, the NUMA remote accesses are counted, which are seen as
remote I/O by the local node. Additionally, the cache block commands, which ensure

coherency across NUMA nodes, can be monitored with counters from this category.

With AMD, many more counters can be parametrized with umask (unit mask) filters,
which in turn allows for characterizing the events further. AMD’s unit masks offer

dedicated filters for each event. A possible unit mask description is shown in Table 3.2.

Instruction-Based Sampling

Instruction-based sampling (IBS) was introduced to make events attributable to code
during execution [48]. In general, all the following hardware vendors—AMD, Intel,
and IBM—implement a form of IBS in their PMUs. With IBS, instructions that cause a
previously defined event are sampled with a selectable occurrence frequency. This fre-

quency is continuously altered to avoid sampling the same instructions over and over
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unit mask bit description
0 IC fill
1 DC fill
TLB fill (page table walks)

NB probe request
cancelled request
reserved

L2 cache prefetcher request

NN g s W DN

reserved

Table 3.2: Exemplary unit mask bits for the event PMC x@7D (requests to L2 cache). A

customization of the counting mode can be achieved by setting the respective bits [1].

selected events o
execution time

11 R11m N WIIAY UMYV >

event counting register sampling trigger register
[
reset 2 | | |XXXX| randomize
16 3 0

\J
generate interrupt

Figure 3.1: IBS sampling. A counter is incremented for every selected event. If the
sampling counter is surpassed, an interrupt is generated and the lower 4 bits of the

sampling rate are altered randomly.
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in tight loops. The method can subsequently be considered an empirical measurement.

A block diagram explaining this sampling method further is shown in Figure 3.1.

The resulting IBS record of a captured sample comprises a virtual or even physical
address. Additionally, information about the instructions’ hits and misses in the caches
and the TLB are recorded. A typical IBS ISR copies all these values to a preallocated

kernel memory region for later analysis.

Because modern CPUs are designed in a pipelined fashion, there is a small delay of
unknown duration called skid, which is the time between issuing the instruction and
detecting the PMU event at an arbitrarily delayed point in time. This causes the address
of the instruction pointer to be incorrect and spread around the actual address of the
instruction. In their paper, Drongowski et al. are the first to present IBS in the context
of AMD’s Catalyst analysis suite [48]. They explain how IBS is able to reduce jitter in

skid dramatically for newer architectures, resulting in more accurate measurements.

As an opposite effect to skid, Chen et al. identify an additional phenomenon called
shadow effect, which impairs the sampling results [27]. Shadow is caused by instruc-
tions with long stalls such as TLB misses or NUMA remote memory loads, which get
sampled disproportionally more often than shorter instructions. For a detailed inves-
tigation on more effects and overheads, the works of CERN openlab (Andrzej Nowak

et al.) are a good source of information [98].

There are two different kinds of instruction-based sampling in modern AMD proces-

sors: fetch sampling and op sampling [1].

Fetch sampling describes the loading process of an instruction until it reaches the CPU’s
decoding unit. A term closely related to this is frontend-stalled, which describes that the
processor suffers from the delay in retrieving and decoding an instruction. In the IBS
records for fetch sampling, one can find hit and miss information for all instructions

with respect to caching and TLBs, as depicted in Figure 3.2.
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IBS Record

+ VAddr
+ Physaddr needs to be enabled

+IC|L11|ITLB miss bits (IbsPhysAddrValid bit)

+ ITLB Translation pagesize
+ fetch latency in cycles

Figure 3.2: Fetch record. When a certain amount of events has passed, one instruction is
sampled in detail. The IBS record contains all information valuable to the programmer,

such as miss addresses, miss information bits, and fetch latencies [1].

op decoded

wait for operands

IBS Record wait to be issued
+ VAddr
+ TagToRetire in cycles

+ CompleteToRetire in cycles

wait to be executed

wait for younger ops
to retire

op retired

I
|

Figure 3.3: Op record. For op sampling, only a virtual address is recorded. As shown in
the graphic, the latencies TagToRetire and CompleteToRetire denote different timings

in the instruction’s execution lifetime.
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After fetch sampling, op sampling describes the subsequent life cycle of the instruction,
that is, from reaching the decoder until causing the last effect on other operations in-
side the execution pipeline. The corresponding term here is backend-stalled. Op sam-
pling can be done for events that issue a branch, resync (pipeline flush), return, load,
or store. When combining fetch sampling and op sampling, the overall observable life
cycle of an instruction can be documented accurately. The exact information stored in

the IBS record for op sampling can be found in Figure 3.3.

To further reduce the overhead of interrupts with IBS, AMD introduced lightweight
profiling (LWP). With few more instructions, a userland control block can be defined
that triggers LWP for IBS. By using LWP, IBS measurement results are written directly
to a userland ring buffer through the PMU interrupt service routine. Unfortunately, this
feature is discontinued with the AMD Zen architectures. The Linux kernel, however,

is able to implement the same behavior when using the perf_event_open facility.

3.1.4 Intel—Haswell

The performance counters of Intel processors are similar to the ones described for
AMD [70]. Modern Intel CPUs (Haswell, 3rd generation) provide up to eight individual
counters per core (if engineers attribute events to hyperthreads, these split to 2 x 4).

There are about 300 plain performance events available on recent processors [37].

At first, a close-up look on precise event-based sampling (PEBS) is taken, which is similar
to AMD’s IBS. This section then further focuses on the performance-relevant NUMA-
related events within PEBS. A short introduction to CPU-supported power measure-
ments using Intel running average power limit (RAPL) facility and the last branch record

(LBR) concludes Intel’s PMU specifics [135].
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Precise Event-Based Sampling

Intel precise event-based sampling (PEBS) is a sampling-based monitoring tool capa-
ble of recording the location and the operator information of specific instructions. As
with AMD IBS, a sampling counter determines the measurement rate. Especially the
in-depth measurement capabilities of PEBS for determining memory load latencies
are relevant to NUMA, since they also incorporate costs for remote instruction and

operand fetching as well as NUMA-induced cache coherency.

For PEBS events, engineers can choose a so-called precise level of skid that they con-

sider acceptable for their measurements.

Level 0 (no perf extension) allows for arbitrary skid
Level 1 (:p) only allows for a fixed amount of skid
Level 2 (:pp) skid requested to be 0

Level 3 (:ppp) skid forced to be 0

PEBS includes the instruction’s virtual address in its record only. Intel argues that the
most relevant information about cache lines can still be retrieved, since the lower bits
are identical in virtual and physical addresses. Note that for better readability, all events

are denoted in Intel perfmon mnemonics rather than in hexadecimal representation.

Instead of specifying event codes and unit masks, Intel denotes each of these combi-
nations with capital letter identifiers. The variety in memory load specifics for PEBS
is high. For memory accesses, three events exist: MEM_INST_RETIRED for any instruc-
tion containing an operand access, MEM_LOAD_RETIRED for load instructions only, and

MEM_STORE_RETIRED for instructions comprising a store operation.

Regarding NUMA, all interaction concerning L3 is relevant, since both data transfers
as well as cache coherency between cores happen at that level. Since Intel incorporates

a snooping-based approach for cache coherency, each NUMA node’s L3 cache contains
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consistency information for each cache line concerning the other NUMA nodes [91].
The PEBS record contains information about the data source and cache coherency state
for data of a given instruction in its lower 4 bits. Table 3.3 depicts the data source

locations for the cache protocols in detail.

Load latency is usually determined for MEM_INST_RETIRED. With Intel, it is only pos-
sible to determine if the latency of a certain memory request is above a predefined
threshold (which is called 1dlat in this case). The load latency threshold is written to
the MSR at @x3f6. If an instruction has a higher latency, the event counter is increased.
Only one counter can be used while determining the latency, so that two events may
never be recorded simultaneously. This latency measurement facility is used by the

tool Memhist, which is described in Section 4.3.

Last Branch Record

PEBS further provides detailed information on the recent branching behavior of a
branch instruction (precise branch events) by filling a buffer that Intel calls the last
branch record (LBR). The LBR contains branching source and target addresses for the

last 16 branches. This is explained in more detail in Section 3.2.1.

Running Average Power Limit

With Sandy Bridge, Intel introduced the running average power limit (RAPL) to its
power control unit (PCU), which is able to estimate power usage with an internal
model [35]. The power usage since start-up can be queried via sysfs under /sys/class
/powercap/intel-rapl/intel-rapl:@/energy_uj, for usage as yet another low-level
performance indicator. To estimate the power consumption, the PCU measures the
CPU’s frequency and current. Power consumption is determined for each core individ-
ually to spend more thermal budget during a short period of time if possible. Settings

concerning the thermal budget can be found and changed via the sysfs, too [129].
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encoding description

0x0
ox1
ox2
0x3
ox4
0x5
0x6
ox7
0x8
0x9
OxA
0xB
oxC
oxD
OxE
OxF

unknown L3 cache miss

L1 hit

data was in fill buffer (on the way to L2)

L2 hit

L3 hit, no coherency measure necessary

L3 hit remote, no modified copies

L3 hit remote, modified copies where present
reserved

L3 miss remote, no modified copies (forwarded)
reserved

L3 miss, serviced by local DRAM (go to shared)
L3 miss, serviced by remote DRAM (go to shared)
L3 miss, serviced by local DRAM (go to exclusive)
L3 miss, serviced by remote DRAM (go to exclusive)
I/0, request of input/output operation

the request was to uncacheable memory

Table 3.3: Location records for memory loads. Event masks for selecting specific mem-

ory load events. NUMA-relevant events are highlighted.
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3.1.5 IBM—Power8

The vendor IBM offers rich features within the PMUs, often times covering the ones
presented for the previous CPU architectures [126]. This thesis presents a summary of
the hardware counter facility of IBM’s Power8 architecture. IBM’s counting facility is

called performance counter monitor (PCM) [23].

For Power8 systems, there are six performance counters per hardware thread. The first
four ones are bound to specific event groups, the fifth one measures instructions, and
the sixth one measures cycles. IBM recommends measuring cycles per instruction (CPI)

as one of the key performance indicators, using the latter two registers at all times [87].

In addition to the usual control registers, there are three registers with further infor-

mation concerning the last event [69]:

SIAR the sampled instruction address register
SDAR the sampled data address register

SIER the sampled instruction event register

SIAR holds the approximate virtual address of the sampled instruction. SDAR provides
information about the instructions and operands addresses alike. With SIER, IBM of-
fers a functionality to determine events related to the instruction’s execution. SIER
contains information about the class of events, cache fetching information, branching

information, and even reasons for mispredictions of speculative branches.

As in the case of Intel’s LBR, IBM provides a so-called branch history rolling buffer,

which represents a record of the last branches [107].

Threads running on a system can be flagged to be either counted by the PMU or ignored.
In this way, threads can be preselected for performance analyses. Similar to Intel and
AMD architectures, IBM offers a performance monitor interrupt. This interrupt is either

triggered by hardware or artificially invoked by executing the (and 0,@,0) NOP [126].
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IBM does not specify the skid of general events. This implies that most counters can-
not be considered precise. There are exceptions, however, that allow exact precision
for counters on Power8. If the instruction forces a synchronization (such as transac-
tional memory instructions do), they can be considered precise. IBM introduced the
concept of verified marked event counters (often annotated with MRK), which can also

be considered precise [126].

IBM provides various event counting modes. Default, continuous counting simply in-
crements associated counters upon every event occurrence. Randomized sampling can
be applied to all instructions. Loading or branching instructions can be sampled with
even more options. As with AMD’s sampling, a small random change in the sampling
period is employed to avoid sychronizations of events inside tight loops. There ex-
ists a third method that employs time points for sampling. This so-called time-based
transition event allows for better attributability among threads in parallel applications,

because sampling intervals are triggered using time information instead of cycles.

All counters can be frozen inside the Power8 PMU with the help of bits in the PCM con-
trol registers. This either allows for emitting events when reaching a certain counter

value or for excluding parts of executables from being counted or analyzed by the PCM.

3.2 Existing Tools for Measuring Hardware Performance
Counters

Chapter 4 presents novel tools that analyze performance based on hardware counters.
With this in view, this section introduces related tools for comparison. Since this thesis
focuses on execution time performance mainly, tools optimizing for other aspects such

as memory usage are mentioned briefly only.
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3.2.1 The Linux perf Utility

After describing the hardware facilities that offer information about the system’s per-
formance state, this thesis explains the Linux perf utility. During the course of this
work, perf became the centerpiece for performance measurements. The author recom-
mends all programmers concerned with performance to learn the basic perf function-

alities. Many tools presented in this thesis are built upon the Linux perf utility.

perf constitutes an integrating as well as an abstracting layer over raw counters and
kernel events. It became a part of the Linux kernel in version 2.6.31 [106]. perf ab-
stracts from the individual hardware counters on different platforms. Additionally,
Linux perf offers tracepoints and counters for all kernel-mode activities such as net-
working, scheduling, or filesystems. Kernel facilities as well as arbitrary function sym-

bols can be injected with a perf kernel probe.

In the immediate measurement mode (perf stat), events can be counted for program
runs. Repetitions can be specified such that event counts are averaged and basic statis-
tical errors are calculated and presented. Available abstract events can be listed with
perf list. This list subprogram additionally shows all aforementioned kernel trace-

points when executed as a superuser.

perf is able to attribute all measurements to specific locations in a fine-grained fashion.
Programs can be measured on the entire system, on specific CPUs, and on sockets.
Also, a system-wide mode exists, which traces all processes on a CPU or even across
the whole system, again requiring superuser permissions. This allows for detecting

imbalanced workloads between NUMA nodes, for instance.

Through the event-based sampling facilities (if existing on the processor), perf is able
to record (perf record) events and attribute them to individual addresses. In this way,
assembly—or code if debug symbols are available—can be viewed, which is then anno-

tated with the number of event occurrences (perf report).
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Branching Information from Last Branching Records

perf offers options to monitor the branching behavior of programs using CPU facilities
such as the last branching record (LBR). The branching information enables engineers
to extract short traces of the last branching decisions leading to a specific instruction.
Since branching records contain both the source and target addresses of branches, the
most frequently taken branches can be analyzed statistically. All branches are also

tagged as function calls, regular branches, or returns.

Compilers are able to generate compiliation hints for profile-guided optimization (PGO)!
from the LBR [96]. Through LBR, the causes of errors originating from the improper

use of transactional memory instructions can also be debugged.

Note that on most Linux systems, one PMU counter is used as a watchdog for non-
maskable interrupts (NMI). Because of this, perf measurements that require all avail-
able registers do not work when this watchdog is enabled. Non-maskable interrupts
cannot be interrupted by any other event inside the system. Infinite loops inside NMI
ISRs can thus bring the system to a complete halt state, which is non-recoverable. With
the help of the watchdog, the system is able to detect the loops and recover, though.
Although perf warns about the NM]I, it does not automatically disable it before mea-
surements. One can disable the NMI watchdog when executing the line below or by

disabling it in the system’s bootloader.

echo @ > /proc/sys/kernel/nmi_watchdog

Listing 3.5: Disabling the Linux NMI watchdog.

l-fprofile-generate for gce



3.2. Existing Tools for Measuring Hardware Performance Counters 55

Linux API: perf_event_open

Linux perf_event_open is a programming API for perf’s functionality, which can be
embedded into software to measure counted or sampled events [134]. After setting up
an event, a file descriptor is returned, which can be queried with the read call from
then on. Sampled events are periodically written to a ring buffer specified beforehand.

Example code for counted events can be found in Appendix A.

While perf_event_open is the library counterpart of the perf command and does not
add new functionality to perf, programmers are enabled to measure specific parts of
their code without needing to run perf in an additional process. Yet, this approach
requires modifying the program code and might thus also involve a management over-
head, such as aggregating the measured values or printing them. perf_event_open
might help in making dynamic decisions in the program’s execution based on reflec-

tion upon its own behavior.

3.2.2 Intel VTune Amplifier and AMD CodeAnalyst

Intel’s VTune Amplifier is a product commercially available on Linux and Windows,
which allows for analyzing the performance of code [34]. VTune offers a graphical
user interface as well as a command-line interface and can be run on a remote host
for performance analyses over the network. VTune makes use of program instrumen-
tation, hardware counters, and precise event-based sampling to attribute performance
measurements to lines of code. Performance is recorded during program runtime, and
thus, a temporal analysis of a program is possible. The utilization of multi-threading is
analyzed and classified from poor to excellent. When using VTune, programmers can
gain information at different levels of abstraction. As a first overview, a performance
summary is created automatically, which points out major hotspots and performance
issues in the programs execution. Lines of code, individual variables, as well as called

functions can be further investigated with respect to their performance.
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As with VTune, AMD’s CodeAnalyst is available on Linux and Windows [47]. CodeAna-
lyst is able to attribute previously recorded performance-relevant measurements, such
as function sampling through instrumentation and hardware performance counters,
to lines of code. This tool is additionally applicable when analyzing performance prob-
lems in heterogeneous computing, namely CPU-GPU interaction in OpenCL [121]. For
Linux systems, all perf events can be used as an input to CodeAnalyst, which enables

it to also trace kernel profiling probes.

3.2.3 PMU Tools

The most prominent open-source tool for aggregating the information available to perf
is pmuevents [77]. It is restricted to Intel CPUs and consists of a set of Python scripts.
Before start-up, pmuevents automatically downloads processor-specific PMU informa-
tion from Intel’s open-source web platform [38]. pmuevents combines measurements
with general recommendations and performance drilldowns recommended in the soft-

ware optimization guides of the vendor [37].

Engineers new to the field of performance measurements should use toplev.py, which
points out main program bottlenecks such as front-end or back-end stalling issues. The
tool ocperf.py eases the measurement of Intel’s symbolic event notation, which is

much more readable than raw event codes and thus easy to understand.

3.2.4 Other Tools

Tools for Windows

On Windows, Microsoft Visual Studio offers profiling capabilities, which are based
on recording instrumented code samples that can be analyzed temporally [72]. Visual
Studio, however, does not consider hardware counters in its analysis. To measure raw

PMU counters on Windows, Xperf, a part of the Windows Performance Toolkit, can be
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used, which yet only records counters for a fixed amount of time after start-up. The

results recorded with Xperf can later be visualized with Xperfview [36].

Valgrind

Valgrind is a collection of tools concerning memory debugging and profiling, which is
available on Linux, Android, as well as OS/X. Though it does not rely on hardware per-
formance counters for its performance measurements, Valgrind can analyze caching
behavior through its subtools callgrind and cachegrind [94]. Valgrind can obtain this
information because it co-emulates all instructions and memory behavior in a virtual-
ized processing system during execution. On the one hand, this allows for introspec-

tion but on the other hand, this slows down measurements by factors of up to 100.

Heaptrack

As an upcoming open-source tool for finding unneccessary heap allocations, heap-
track can trace most heap allocations through the interception of malloc calls. Results
are presented in a graphical user interface, offering top-down and bottom-up analyses

and attribution up to individual variables [138].

Intel Memory Latency Checker

To assess properties inherent to the NUMA interconnects, the Intel Memory Latency
Checker (mlc) can be utilized [33]. The tool runs a custom test suite between all lo-
cations memory could reside in. In this way, latency and bandwidth information for
caches, memory accesses, and even NUMA remote accesses can be determined. On
a command-line interface, node-to-node interconnect information is presented in the

form of latency matrices.






59

4 New Tools for Analyzing
Performance

This chapter introduces four novel tools, which support the performance optimization
strategy formulated in Section 2.6. The strategy proposes splitting cost deduction into

two steps, using low-level hardware counters (see Section 3.2) intermediately.

EvSel covers all hardware counters to compare program runs and to perform program
parameter regressions. Phasenpriifer automatically attributes the counters to distinct
ramp-up and calculation phases of a tested program. Membhist leverages the load la-
tency events for load instructions to reveal the latency cost distribution of memory ac-
cesses. Hydralisk artificially loads individual interconnect links while simultaneously
measuring their bandwidths. In contrast to the other tools, which concentrate on per-

formance indicators, Hydralisk influences and assesses the environmental parameters.

As all tools are built upon Linux perf, they are adoptable to hardware platforms where
according performance counters are exposed. For each tool, development consider-
ations and the resulting scope of applicability are explained. This chapter provides

examplary usages of the presented tools in characteristic experiments.

4.1 Selection Through Correlation: EvSel

This section introduces EvSel, a tool that retrieves, measures, and presents all physically
available hardware counters to the user. EvSel allows for identifying and excluding

counters that are zero or that do not matter for performance considerations. EvSel
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also enables programmers to compare two versions or parameter configurations of a

program with respect to all performance counter information.

Often times, programmers hypothesize that certain performance indicators correlate
to input parameters of a program. With EvSel, such individual correlations can be
detected automatically. Therefore, EvSel varies specified input parameters in order to
determine functional dependencies between the input parameters and each measured
indicator. As a qualitative assessment, EvSel computes statistical confidence values

both for comparisons and correlations.

Altogether, EvSel allows programmers to pinpoint relevant bottlenecks stemming from

the underlying mechanism (represented by a specific indicator) to investigate further.

4.1.1 Retrieving Performance Counters

To allow for interoperability and portability across multiple hardware platforms, EvSel
is built on top of perf. The event codes available on the platform are read from a
JSON file that provides descriptions for the events. EvSel presents event codes with
all possible unit masks alongside the resulting semantic description.! Additionally, a
detailed description of the events is shown, which can later be used for identifying the

corresponding performance problem.

EvSel was designed to measure all performance counters during the whole program
run, and does not perform event cycling thus. Because only a limited number of regis-
ters is available for measuring, however, program runs are repeated to circumvent this
problem. This thesis argues that collecting counters over identically configured pro-
gram runs instead of performing event cycling during execution (through often times

more than 100 counters) might be the better choice when measuring many counters.

'Using all event/umask combinations sometimes results in configurations that have identical effects.
It is the aim of the program, not to exclude possible sources of information, though.
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All retrieved values are stored as raw as possible with their event identifiers for a single
measurement run. To process the data further, a chain of lazily evaluated filtering and
aggregating C++11 functors (lambdas) and functions is applied to the raw data. This
architecture does not preaggregate or reject values and thus aims for extensibility. For
the task of regression, the data is represented as raw matrices for faster computation

using linear algebra libraries.

The user interface is written in C++ with the addition of the Qt GUI toolkit. Events are

separated into groups for core and offcore events.

Several visual cues help engineers understand data more quickly. If a value remains
zero for all measurements, it is greyed out. Correlations are color-coded for a quick

overview. Tooltips are added to reveal more detailed information.

The main functionality of EvSel is depicted in Figure 4.1. Interested readers may try

out EvSel, improve it, or add desired functionalities using the repository.?

4.1.2 Comparison and Correlation

EvSel uses regressions to correlate parameters with event counters. To find interdepen-
dencies, linear, quadratic, and exponential regressions are created and evaluated. The
library Eigen 3 is used to retrieve both regression parameters and errors by means of
linear algebra [49]. This method is also used for other purposes in the tool Phasenpriifer

and explained in more detail in Section 4.2.

For single comparisons, Student’s i-test is applied to the measurements [123]. Upon
selecting more than one measurement, Student’s t-test is conducted among all events
of the two measurements. In the rest of this section, this thesis shortly outlines the

statistical decisions made for this method.

“https://github.com/chsterz/performance-tools.git
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sequentially.
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Figure 4.1: EvSel interface. EvSel presents all retrieved counters alongside their descrip-

tion. In the shown case, the two selected measurements are compared.
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First, the implementation assumes a normal distribution. This decision can be consid-
ered controversial, since the measurement is clearly biased towards smaller values.
The bias is due to the fact that often times, there is a minimum value that cannot
be undercut. This value can be thought of as the optimum execution plan of the pro-
gram. For this reason, EvSel first assumed a log-normal distribution. This decision,
however, turned out to favor very small values overly. Conversely, when employing
a log-normal distribution, the t-test did not perform well on very large values. Caused
by these problems, EvSel relies on a plain normal distribution for now. However, de-
termining the aforementioned minimum with a suitable estimator and employing a
gamma distribution starting at this minimum point could capture the underlying pro-

cess statistically more accurately.

Second, the t-test uses Bessel’s correction to correct the degrees of freedom when calcu-

lating standard deviations for a mean that is not known prior to the measurement [103].

Third, since the test should be possible for different user-chosen program runs, Welch’s
method is employed to compare different population sizes [89]. EvSel assumes similar
standard deviations for both measurements, since the mechanisms producing the val-

ues are the same—in this case, the hardware counters.

4.1.3 Exemplary Results

This section analyzes and compares selected microbenchmarks with EvSel related to
performance issues. In a first example, a comparison of program configurations is pre-
sented for a cache miss scenario. A second example shows EvSel’s results when finding

correlations between input parameters and measured indicators for parallel sorting.
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Cache Miss Microbenchmark

In the following code listing, an array is created and also read in column-major or-
der (left), hereby hitting cache lines fairly often. On the right side, the array is read in

row-major order instead, causing many more cache misses than before.

const size_t size = 1024; const size_t size = 1024;
auto array = new float[sizel[sizel; auto array = new float[size][sizel;
float altsum = 0; float altsum = 0;
// fill array with random values // fill array with random values
if (y % 2 == 0) if (x % 2 == 0)
altsum += arrayl[yl[lx]; altsum += arrayl[yl[lx];
else else
altsum -= array[yl[lx]; altsum -= array[yl[x];
std::cout << altsum << std::endl; std::cout << altsum << std::endl;

EvSel reveals interesting insights even beyond cache misses. The difference in the num-
bers of cycles can be fully explained with execution stalls. As expected, all cache levels
suffered from the increased stride length in the accesses. L1, L2, and L3 cache misses
rose by over 1000 %, 300 %, and 50 %, respectively. Interestingly, L2 prefetch requests
dropped by 90 %, since prefetchers directly accessed the L3 cache (L3 cache accesses
increased by a factor of 100). The biggest increase was notable in rejected fill buffer
requests.> While in the example of cache hitting, the fill buffer rarely had to reject a
demand (26 occurrences), it rejected nearly all registration attempts in the case of the
cache miss example (3 million occurrences). All these values reveal statistical differ-

ences with significances of over 99.9 %, which is typical of such large absolute changes.

As expected, branch misses (3.2 %) and instruction-related values (1.9 %) show very
small changes of their absolute values. Still, a minor correlation caused the values to

be statistically distinguishable through t-tests. Selected results are shown in Figure 4.2.

*Instructions that miss the L1D cache can register their fetch demand in the fill buffer, which holds
around ten entries, depending on the CPU model.
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Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribu... 1.97% p>0.999
All mispredicted macro branch instructions retired. 3.22% p>0.999
Reference cycles when the core is not in halt state. 77.63% p>0.999
Cycles with pending L2 cache miss loads. 375.36% p>0.995
Cycles with pending L1 cache miss loads. 1096.03% p>0.999

Figure 4.2: Selected run comparisons with EvSel for a caching microbenchmark.

Parallel Sort Microbenchmark

As a second microbenchmark, the parallelization of std: :sort using GNU libstdc++
parallel mode is analyzed. For this purpose, a 4 MiB array of uint is filled with pseu-
dorandom numbers using a linear congruential engine (LCE), which is essentially a
multiply-add ignoring overflows [78]. Figure 4.3 shows the code as well as a chart

that depicts the runtime development with regard to the number of threads.

This development can be investigated further using EvSel. Due to an increased use
of the cache protocol for the shared data, the regression detects a strong correlation
(R > 0.95) between thread count and L1 data caches being locked. The L1D cache is

locked due to TLB page walks by the uncore, which manages the core interplay.

One can also observe a high negative correlation between the number of threads and
retired speculative jumps (R > 0.99). This is a bad sign—this means that the CPU was
not able to speculatively predict more actually executed instructions. Especially when
comparing between hyper-threaded and non-hyper-threaded execution, this becomes
clear because for 1-4 threads, relatively constant values were detected and rose in one
step by 30 % to a relatively constant level for 5-8 threads. Three selected correlations

can be seen in Figure 4.4.
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omp_set_num_threads (numThreads); (mﬂthoutiﬂT)
80

(with HT)

const long size = 1024%*1024;
std::vector<uint> data;
data.reserve(size);
60
//BSD linear congruential engine
const uint lcg_a = 1103515245;
const uint lcg_c = 12345 ; 40
uint lcg = 1337;
for(long i = @; i < size ; i++)
{
lcg = lcg * lcg_a + lcg_c; 20
data.emplace_back(lcg);
¥
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R

Intel Core i7-4700HQ
@2.4 GHz
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Figure 4.3: Parallel sorting. An array filled with pseudorandom numbers is sorted us-
ing GNU libstdc++ parallel mode with a varying number of threads. As seen in the
right diagram, which shows execution times in milliseconds with respect to the num-
ber of threads, the scaling behavior is different in the non-hyper-threaded and hyper-
threaded cases. Generating the random numbers is included in the measurements be-

cause with EvSel, the whole program run is analyzed.

Cycles when L1D is locked Linear 8416.82x +-2086.06 , R =0.95
Taken speculative and retired macro-conditional branch instructions excluding calls Linear -846953.81x + 17719634.00, R?=0.99

Speculative and retired macro-unconditional branches excluding calls and indirects Linear -813825.00x + 17622982.00, R*=0.98

Figure 4.4: Selected correlations from EvSel for the parallel sorting microbenchmark.
Event types, regression function types, and the regression functions themselves are

shown along with their coefficients of determination.
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4.2 Program Run Phases: Phasenprtiifer

Phasenpriifer automatically detects the transition between execution phases from a
recorded program run, namely, ramp-up and computation. While recording, selected

events are measured and presented to the user, separately aggregated for both phases.

4.2.1 Functionality and Limitations

Many programs undergo multiple execution phases [113]. The tool Phasenpriifer was
built to help gain understandings about the ramp-up and the computation phase. Espe-
cially in the case of high-performance workloads on NUMA, a single node is typically
generating or reading bigger amounts of data at first, which are then distributed and
calculated later. This results in an asymmetry of the measurements for the individual
nodes because in the ramp-up phase, all events originate from a single node, whereas

in the computation phase, counters on all nodes contribute.

Observations during prior experiments showed that most of the events in the ramp-
up phase are caused by I/O activity or memory redistribution among nodes. Conse-
quently, in the case of Phasenpriifer, memory footprint (reserved memory, obtained

trough procf's) is used to determine the phases.

Because the need of attributing different perf event measurements to the phases arose,
Phasenpriifer was adapted to also record and analyze information for the two phases
separately. Since statistical fluctuations and, often times, too few available samples
cannot provide the same input data quality as the memory footprint, phase analysis

itself is not yet feasible based on analyzing single or multiple perf events.

Currently, Phasenpriifer considers two phases only yet is easily extendable to recog-
nize more phases in future work. In the example of BSP-like programs, where multiple

supersteps could be analyzed, recognizing individual steps may be desireable.
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Phasenprufer (QML) Backend (C++) Testee
Gul I h licati
Graphs +launch(application)

+measureFootprint()

+recordPerfEvents()
+splitPhases()

+perfEventsin(phase)

perf record

Figure 4.5: Architecture of Phasenpriifer. The frontend written in QML triggers func-
tionalities in the backend (C++). First, the testee is launched. This triggers the record-
ing of perf events, which are stored in a temporary file to be analyzed later. During
the testee’s runtime, memory consumption is measured and visualized. After the test,

phases are determined. Finally, users can query the events for the separate phases.

Phasenpriifer is implemented using C++ and Qt’s QML language [29]. The first part
is a backend that provides the measurement and application launch functionalities.
The second part is the graphical user interface, written in QML and communicating
with the backend via Qt’s signal and slot facilities. Because the phase split cannot be
known beforehand, a temporary file records the events during program runtime. Later,
the contents of this file can be queried for the individual phases. Architecture and data

flows can be seen in Figure 4.5.

4.2.2 Automatic Phase Selection Through Regression

Phasenpriifer needs an automatic and fast way of splitting measurement data into mul-
tiple chunks to allow for interactive response times. As with the other tools, Phasen-

prifer is designed not to intrude the operation of the program under test.

Instead, the two phases are determined purely based on observation. With the help
of segmented regression, Phasenpriifer models the phases as functions and finds the

phase transition. To achieve this, all data points are iteratively considered as phase
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memory footprint memory footprint memory footprint
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t t phase 1! phase 2 t

(a) (b) ()

Figure 4.6: Determining phases. Based on the raw data (a), all data points are iteratively
considered as pivot elements. Then, all possible combinations of two linear regression
fits are tested. After selecting the lowest combined error of both functions that were

found previously, the pivot element is selected as a phase transition.

transition points (pivots) first. Next, regression is performed before and after each pivot
point. The phase transition is selected as the point where the summed error of both

regressions is minimal. This method is depicted in Figure 4.6.

The regression itself is achieved using the linear least squares method with linear alge-
bra. A short deduction of the used method can be found below [122]. For this purpose,

the data is modeled as the overdetermined system of linear equations y = Xp.

Yo X 1

Y1 x 1
Bo

P

yn xfl 1

The least squares method now finds the parameter ,3 such that its squared difference

to y (here called S) is minimal.
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S =|ly - XBI”
=(y-XB)'(y - XB)

=yTy - pTXTy - yIXB+pTXT X
(a) (b)
See how (a) and (b) can be considered equal in this case:

BTXTY)" = y'Xp
Both sides are scalar, since y and X both have the dimension of y. Scalars are equiv-

alent to their transposes. Hence, the following (non-transposed) also holds:
PTXTy = y'Xp
(a) = (b)
To find the minimum of S, we can now minimize the function (with (a) equal to (b)):
S=yly-28xTy+ BTXTXp
We partially derive for § and set it to 0 for the initial criterion:
XTy+(XTX)B=0
Since X consists of different x; coordinates for the different points, the second partial
derivation for § will never be 0, as it is positive definite (sufficient criterion):
XTX)#0
From the second but last formula, the optimal parameters for ﬁ can be derived:
p=(XTx)y1xTy O
[? now contains the parameters a and b of the best-fitting polynomial y = ax + b.

Since matrix operations for these small values can be done highly efficiently with the
linear algebra library Eigen, the phases can be determined in milliseconds, even for
thousands of data points [49]. More complex functions could be fitted by pretrans-
forming the data (for instance, by applying natural logarithms beforehand). For the
case of this particular discrimination, only linear memory serving capacity is assumed.

This is because programs allocate memory with the maximum possible rate during the
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ramp-up phase (linearly increasing memory footprint) and commonly keep a relatively
flat slope during the calculation phase [113]. Therefore, the need of a non-linear fitting

function does not arise here.

4.2.3 Exemplary Results

This thesis showcases the start-up phase for the popular web browser Google Chrome.

The typical application usage can be seen in Figure 4.7.

4.3 Latency Analysis: Membhist

To better characterize NUMA workloads, a third tool, named Memhist, was developed,
which summarizes latency penalties of memory load operations in a histogram. The
histogram shows how often events occurred, grouped by their latencies. Memhist is
available for Intel platforms starting from Haswell. It makes use of the precise load
latency feature of these processors, which can be used to determine whether a certain

cycle threshold was surpassed for a memory load.

4.3.1 Histogram Construction

Events for cache levels, the TLB, and memory can be assumed to bear well-known
costs [68, 37]. However, latencies in the range of NUMA remote accesses can vary
widely. Membhist provides an estimation of the cost of remote accesses. When measur-
ing exact latencies, even cache accesses spread around their expected peaks. This is
caused by the costs of cache evictions and overall, undeterminable jitter in the process.
On Intel systems, the so-called use latency is determined, which includes the pipeline

queuing delays in addition to memory subsystem latency.

Creating the histogram is only possible through empirical sampling over longer time

periods. This is due to several drawbacks of load latency events. First, as these need to
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Figure 4.7: A typical user interaction with Phasenpriifer. In this example, the start-up

behavior of Google Chrome is analyzed.
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be measured as PEBS events (blocking the remaining count registers), only a single
measurement can be performed at a time. Second, the load latency events denote all
the loads that surpassed a threshold value. To retrieve event information for a specific
latency interval, two measurements (lower and upper bound) have to be performed

and subtracted. However, only one threshold measurement can be done at a time.

This poses the problem that time cycling has to be performed to cover a wider range
of latencies. For this reason, negative event occurrences might be observed if the mea-
surements for both bounds vary overly. This poses an error that cannot be avoided,
although Memihist cycles with a frequency of 100 Hz (10 ms slices). As another draw-
back, Intel does not guarantee measurements of under three cycles to be correct. Thus,
L1 cache hits cannot really be distinguished from register accesses. Because Memhist
targets latencies in the realm of NUMA, which often require around 300 cycles and

more, this is a minor issue.

The correctness of the latencies measured with Membhist was verified with the Intel

Memory Latency Checker tool, mlc.

4.3.2 Implementation

Memibhist is also implemented in C++ and the declarative language QML for its GUI.
Users can choose latency interval sizes in a specified range. Memhist offers the option
to either count events or multiply event occurrences with their respective latencies to

gain insights on the amount of cycles spent in a certain latency interval.

With Membhist, latencies can be measured either on a local computer or on a remote
system. Server platforms do not always provide all options for a rich graphical inter-
face (Memhist requires OpenGL for its QML interface). Because of this, an additional
headless probe was developed, which transfers the measured data via TCP to the GUI.

This remote-local architecture is shown in Figure 4.8.
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GUI + EventFor(Interval) Probe  (Python)
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Remote Server

Figure 4.8: Membhist architecture for remote probing.

4.3.3 Exemplary Results

To verify the described measurement approach, this thesis presents results for a NUMA-
optimized SIFT implementation [81], which acts almost entirely on local memory, as
shown in Figure 4.9. This measurement, as well as all following measurements con-

cerning NUMA, were performed on a four-node topology server.*

The peaks in the graphics match the results obtained with the Intel Memory Latency
Checker [33]. Note that while mlc measures times in nanoseconds, Memhist measures
cycles, which can be transformed to times in this case. This is especially easy, since the

underlying hardware operated at a fixed frequency and TurboBoost was disabled.

In the second histogram, a bimodal distribution can be observed for the remote ac-
cesses. In comparison to mlc’s latency results, this cannot be explained with the phe-
nomenon of remote accesses hitting or missing the remote LLC, as this would have
much higher impacts (mlc suggests around 500 cycles). This thesis did not investigate

the reasons for this observation further.

In future work, many more effects could be investigated, which can now be identi-
fied by Membhist: TLB miss costs, cache coherency protocol overheads, costs of remote

memory accesses in more complex NUMA toloplogies, and so on.

YHPE ProLiant DL580 Gen9 Server, 4xIntel Xeon 8890v3 @2.4 GHz, 4 = 32 GiB RAM @1600 MHz
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Figure 4.9: Screenshots of Membhist’s histogram. While aside from caches, main mem-
ory is primarily accessed in the first case, the costs of remote accesses can be observed
in the second case. All intervals are denoted in cycles. L2 results are truncated to ap-

proximately half their height for readability.
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If engineers are interested in profiling even higher latencies, tools like biolatency [61],
which traces block device accesses using perf, could be used to determine latencies of

file I/O requests, for example.

4.4 Limiting and Characterizing Interconnects: Hydralisk

Hydralisk is a tool that deploys bandwidth load on NUMA interconnects while simul-
taneously monitoring throughput. In this way, it provides an overview of the intercon-
nect bandwidth state. Using Hydralisk, engineers can artificially create subtopologies

of fully connected graphs by limiting links to the maximum possible extent.

This thesis leverages Hydralisk to conduct experiments on the already mentioned four-

node Intel NUMA system available to the lab through the HPI Future SOC initiative.

4.4.1 Limiting Interconnects

Though it is possible to select the interconnect speed coarsely in modern Intel pro-
cessors through the system’s BIOS, influencing single QPI links independently cannot
be achieved by these means. Further, there is no concept of priorities in the realm of
hardware threads, so that assigning bandwidth shares by changing priorities is not an
option. Overall, Intel QPI can be considered fair with respect to threads that demand
bandwidth. In the measurements performed in this thesis (shown in Section 4.4.5), the
difference between individual threads never surpassed 3 % of the reached bandwidth.
The so-called global queue, which manages memory accesses arising from remote and
local requests inside the CPU’s offcore, has been reported to have a slight favor for

local accesses, though [86].

Surely, engineers could change the scheduling priorities of the individual threads to
reduce their bandwidth, yet this would also limit the CPU times of these threads, which

should be considered independently for interconnect measurements.
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Consequently, the most practical method to create bandwidth limits artificially is to
launch dedicated threads to create load on the links. In the following, multiple of these

options are presented and evaluated.

4.4.2 gland: Generating Load on an Interconnect

For generating bandwidth load on the system’s interconnect, gland implements the
stream triad benchmark [88]. Stream triad is essentially executing a multiply—-add (cru-
cial to many linear algebra algorithms) with the help of three arrays, a, b, and c. The

arrays b and c reside on a remote node, allocated there using 1ibnuma:

double =*a (double*) numa_alloc_onnode( N * sizeof (double), localNode );

double *b = (doublex*) numa_alloc_onnode( N x sizeof(double), remoteNode );
double *c = (doublex) numa_alloc_onnode( N x sizeof(double), remoteNode );
[...]
for(long i = @; i < N; i++)
{

alil = b[i] + scalar x c[i];
¥

Execution is pinned to the local node using 1ibnuma. The scalar is chosen to be 3.0 for

reasons of tradition and to avoid possible compiler optimizations.

Since in the particular case of gland, all arrays are filled with doubles, one run itera-
tion of 224 loop iterations amounts to exactly 256 MiB of data that need to be obtained
from the remote arrays b and c. This amount is chosen to be at least twice the size
of the overall L3 cache (45 MiB per node) to avoid caching effects on reiterations. Ad-
ditionally, the increased batch size reduces jitter during the measurement. The value
is not increased further, though, to not unnecessarily load the system with memory

pressure during start-up and runtime.

Stream triad is suitable for bandwidth load simulations for several reasons [86]. First,
caused by its regular data access behavior, the benchmark has a low and constant

cache miss behavior of about 53 misses per 1000 instructions. Second, it scales well to
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multiple cores, since there are little to no intercore caching effects. Third, because the
presented implementation designs triad to surpass the LLC sizes, data can be served
through neither local nor remote LLC and thus has to be fetched with the QPI inter-
connect or from a remote memory controller. Researchers consider triad a so-called

cache gobbler in terms of the program categories defined by Sandberg et al. [108].

In addition to stream triad, there is an alternative implementation using plain memcpy.

Essentially, just two arrays are created and permanently copied from a to b in this case:

double *a
double xb
[...]

memcpy(a, b, N x sizeof (double));

(double*) numa_alloc_onnode(N * sizeof(double), localNode);
(doublex) numa_alloc_onnode(N * sizeof(double), remoteNode);

The memcpy version does not reach the same raw throughput as the stream triad bench-
mark. While gland_memcpy falls down to libc’s memcpy_avx_unaligned, which even
enriches the code with prefetching information, it only achieves around 4.3 GiB/s.”
The ordinary stream benchmark can make use of vectorized fused multiply-add in-
structions, and thus, it does not spend much time in computation but rather in operand
fetching (backend-stalled). In this case, single instances reach 5.2 GiB/s. Appendix A
presents a comparison of the hot-path assembly of triad and memcpy, which is also used
by the Intel Memory Latency Checker. It is important to note that all memory has to
be written beforehand as to circumvent symbolic memory management inside the op-
erating system. For checking whether memory is finally committed and bound to a
NUMA node, modern versions of the Linux kernel offer a specialized numa_maps file

accessible through the proc filesystem:

cat /proc/<pid>/numa_maps

There, the memory policies and current locations of all mapped pages can be reviewed.

*measured for gcc version 6.1.1, compiler flags: -03
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4.4.3 Managing Load

Hydralisk is built in C++ using the ncurses library [58] to visualize nodes and intercon-
nects of the Intel-based test system as well as to allow for user interaction via keyboard
inputs. Aside from libnuma for memory placement and ncurses for the interface, no
additional library dependencies are needed. Hydralisk can be compiled from source on

all platforms supporting a C++11 compiler.

In the current version, interconnect information is simply hard-coded for the four-node
topology that is present on the test system. Later on, tools such as hwloc or 1stopo can
be used to identify topologies and adapt the system to different platforms. As a start,

the tool can be used for at least any identical fully connected four-node topology.

Hydralisk starts up to 20 instances of the throughput generator gland on a each inter-

connect channel. The general architecture is depicted in Figure 4.10.

Hydralisk uses Unix pipes dispatched by select to transfer the troughputs measured
within the gland instances. It is important to note that user interaction, which is muti-
plexed by the same select call-namely on stdin’s file descriptor—is intercepted and
handled separately as not to interfere with the communication of the currently mea-

sured throughputs. The system was tested with up to the maximum of 240 threads.

Hydralisk can be recompiled with gland_memcopy as a load generator. But since high-

est throughputs were achieved with the stream implementation, it became the default.

4.4.4 Exemplary Usage

A screenshot of Hydralisk’s command-line interface can be seen in Figure 4.11. En-
gineers are able to select the individual interconnect channels and place up to 20 in-
stances of gland load threads on them. As live feedback, the most recently measured

bandwidths are presented to the user.
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Figure 4.10: Hydralisk architecture. Single instances of the load-producing process
gland are launched via the Hydralisk command-line interface. ChildProcess wrap-
pers hold interconnect information and start the gland processes with the according
parameters. The resulting throughput measurements obtained by the gland processes
are communicated via pipes to the InputWatcher, multiplexed by using the Unix se-
lect(...) call. To reidentify ChildProcesses, a map translates the file descriptors of each
pipe (obtained from select) back to ChildProcess instances. Finally, the transmitted

throughput information is presented on Hydralisk’s command-line interface.
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Figure 4.11: Hydralisk. The command-line interface presents the topology of the test

platform (limited to four-node configurations currently) to the user. Engineers are able

to select each unidirectional QPI channel and add bandwidth load. In this case, the QPI

link between node 0 and node 1 is loaded in a bidirectional fashion. The channel from

node 2 to 3 is loaded with one instance of stream triad only, which does not suffice to

reach the channel’s capacity.
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Hydralisk is meant to aid administrators and engineers at two points. First, it enables
the simulation of asymmetric hardware topologies on symmetric hardware. As systems
grow bigger, fully connected topologies change towards interconnect hierarchies and
hypercube layouts. Here, Hydralisk can provide first insights to these locally asymmet-

ric topologies and their interplay with software.

Second, Hydralisk is able to stress-test existing applications and operating systems re-
garding their behavior when links congest. In an exemplary scenario, database admin-
istrators operate a second application (for instance, backup jobs) in addition to their
database processes. Hydralisk is able to simulate extra load and let administrators in-

vestigate the decline of the quality of service upon diminishing bandwidth availability.

In addition to the use cases envisioned above, Hydralisk can be used for fast investi-
gations of link bandwidth availability. To this end, Hydralisk can also be seen as an

educational tool to visualize the effects of link cross-talk and congestion.

4.4.5 Experiments and Results

With the functionality provided by Hydralisk, this thesis conducts several small exper-
iments to characterize the QPI interconnect that is present on the test system. It practi-
cally provides insights concerning the reachable bandwidths as well as QPI cross-talk
behavior. Hydralisk is also able to answer the question if adjacent nodes in an energy-

saving state diminish the bandwidth performance.

At first, internode bandwidths are measured by starting several instances of the load
generator gland on the same interconnect. The test platform consists of 9.6 GT/s (gi-
gatransfers per second) QPI links, which should amount to 19.5 GB/s in overall perfor-
mance. However, the Intel Memory Latency Checker, which is used for comparison,
is only able to measure about 15.1 GB/s on the system (note the different units here;

this equals 14.0 GiB/s). In the benchmark using Hydralisk with the stream-triad-based
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Figure 4.12: Single-channel QPI performance. One and two instances of gland are not
able to saturate the QPI interconnect between two nodes fully. With more launched in-
stances, the available bandwidth is shared equally (with differences between the cores
smaller than 3 %). In this example, the theoretical limits of a 9.6 GT/s interconnect could

not be reached. Still, the measurements resemble those of the vendor tool mlc.

gland load generator, Hydralisk reaches 14.3 GiB/s as a maximum bandwidth on the

link, which resembles the results with Intel mlc. Results can be seen in Figure 4.12.

A second experiment was conducted to investigate whether energy-saving states of
the receiving processors influence the bandwidth behavior. Upon specifying verbose
output, mlc stated that it used spinloops to keep cores active. The results in Figure 4.13

reveal that this experiment cannot reproduce this mechanism on the target system.

As a last experiment leveraging Hydralisk, this thesis analyzes the duplex properties
of the QPI links. Therefore, varying loads are placed on opposing nodes to generate
cross-talk on the interconnect. While QPI is conceptionally full-duplex [91], we expect
the results to contain diminished bandwidths with high cross-talk behavior, since the

same L3 caches are used up when cross-talking. The results are visualized in Figure 4.14.
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Figure 4.13: Idle and busy receivers. When measuring bandwidths, the adjacent re-
ceiving nodes were configured to be either idle (grey) or busy-waiting (orange). The
one-shot data reveals that no wake-up effect can be seen in the busy cases. Conversely,

some cases even showed reduced bandwidths when receivers were busy.

4.4.6 Creating Worse Scenarios, More Fine-Grained Limits

The following explains how worst-case scenarios could be generated. These might be

used to stress-test an application’s capabilities to react to transient load.

Caused by fair scheduling, creating worst-case scenarios is very hard on these kinds
of systems. The worst thinkable scenario using the methods presented above would
be to share the bandwidth among all 36 threads on the socket, effectively reducing
one thread’s share of the forward channel bandwidth to a 36th. When adding cross-
talk, the lowest achievable bandwidth would be about 0.36 GiB/s. While this bandwidth
would be the minimum by purely adding load, LLC interferences and increased access

scheduling to the local queue would further hinder a real-world process.
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Figure 4.14: Cross-talk. As hypothesized, links behave best when there is no cross-
talk. After reaching the bandwidth limit, the forward channel is able to transmit about
14.3 GiB/s in the non-cross-talk case. However, when launching an increasing num-
ber of cross-talking instances, the bandwidth diminishes gradually at first yet stays
constantly reduced by about 1 GiB/s afterwards.
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To achieve a more fine-grained limit, stream triad instances can be modified to include
sporadic NOP phases between their load phases. It is important to note that inserting
NOPs has to be performed in continuous intervals to prevent the CPU from performing
out-of-order latency hiding, which would not reduce the overall bandwidth. This mod-
ification has not be investigated, though, and can be considered part of future work
and improvements on Hydralisk. For further information on the interplay of caches

and interconnects, this thesis refers to the work of Molka et al. [91].
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5 Results and Conclusions

This last chapter outlines the contribution of this thesis and concludes the work done
in the research field. It further presents high-level insights and finally comments on

future work and prospects concerning the discussed topics.

Contributions

In the first part of this thesis, a top-down introduction and historical summary on per-
formance modeling in the field of distributed computing was layed out. This thesis
proposed and motivated the need for new performance models in recent and upcom-
ing non-uniform memory access systems. The chapter identified both strengths and
weaknesses concerning the applicability of current models and suggested proposals

for extending and developing future NUMA models.

Low-level hardware counters, acting as the primary performance indicators, were iden-
tified as a potential interface to circumvent the more difficult code-to-cost models or to
transfer program performance characteristics across machines. The document argued
how creating such a model merely on empirical data is inadvisable, though. Instead, a

two-step performance analysis strategy was proposed.

To support programmers in investigating performance issues, the second part of this
thesis introduced readers to the technical concepts of hardware performance counting
for the most popular modern hardware platforms, additionally providing multiple ex-
amples. After explaining the hardware counter sources and register formats, existing

tools were described that aggregate this raw information to high-level insights. Linux
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perf, serving as the base for most of the tools developed in this thesis, was presented

with most detail in this regard.

As a third part, novel tools based on these low-level hardware counters were proposed.
The tool EvSel helps engineers in exploring the details of raw hardware counters, most
of which are not listed by perf. EvSel can measure all counters (currently for Intel
hardware) and presents the visually enhanced results to the user. Programmers are
able to compare pairs of program execution runs or even parameter series statistically.
To gain confidence about measurement runs, t-test significances and the regressions’

coefficients of determination are displayed.

Because this thesis proposed to consider temporal phases when creating cost models,
a deterministic way of splitting a program execution into individual periods had to be
found. The presented tool Phasenpriifer was proposed to address this issue. To perform
and attribute measurements to the identified phases, the memory footprint is used to

temporally separate the execution phases.

As memory access cost is crucial for performance considerations nowadays, measur-
ing individual accesses can reveal much information about program performance. On
modern Intel CPUs, this can be achieved with so-called load-latency-enabled events.
Membhist uses these low-level counters to allow programmers to obtain a rough under-
standing of their program’s memory access behavior through a cost histogram. In this
way, Membhist is able to capture the behavior of programs accessing hierarchical and

heterogeneously distributed memory.

As a core component of NUMA systems, the interconnect plays an increasing role
when determining performance cost caused by remote accesses. Current related work
measures interconnect properties (such as the bandwidth) for exclusively executed pro-
grams or for simplistic topologies like fully connected graphs. To generate and explore

more complex cases, the presented load generator Hydralisk is able to limit individual
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interconnect bandwidths by deploying load on them. This enables researches to artifi-
cially create topologies (bandwidth-wise) that do not resemble the single-cost toplogies

often found nowadays.

Challenges—A Personal View

During the course of this thesis and while investigating performance through measure-

ments, the author identified four major high-level challenges:

Mechanism Programmers need to know from where a performance degradation orig-
inates inside the computing system or programming framework and how to re-

produce the circumstances leading to the issue.

Measurement To validate the effectiveness of changes to a program, measurements
need to be employed. This opens the second challenge of which indicators are

available for measurement and how to measure them.

Relevance The plenitude of measurement possibilities needs to be filtered for appli-
cability in the specific case. This third challenge is about which performance

indicators correlate to a specific program change.

Trust As a fourth challenge, programmers are interested in verifying their findings
against the statistical fluctuations or hidden mechanisms that blur their results.
The challenge of trust in the measurement came up when working on this thesis

and proved to be of significant importance.

This work aimed at addressing all these challenges through the contributions of this

thesis and the developed tools.
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Future Work and Prospects

In future work, the proposals stated for NUMA models could be set into practice and
evaluated. Therefore, a method for simulating accesses to the topology with its de-
noted bandwidth and latency information needs to be developed. With typical bench-
marks, the advantages of a detailed interconnect description such as Linpack might be
revealed in this case. Especially simulating and incorporating different topologies is
important to investigate further when dealing with large-scale systems, such as SGI

UV systems with their complex and dedicated interconnects [40].

The programs developed in this thesis can be generalized to support more hardware
platforms. Additionally, Hydralisk could be adapted to topologies other than the typ-
ical four-node configurations. Especially for the case of IBM, the PMU counter docu-
mentation should be refined and investigated in more depth as to port the existing tools
to the Power8 platform. This would also require changing the event codes for Linux-
based systems, and since perf does not exist on IBM’s AIX, a suitable measurement

layer would be needed there.

The mapping from events to lines of code was not covered in much detail in this thesis,
yet this is important to developers when searching for performance bottlenecks in
their programs. Thus, tools incorporating the program code need to be developed using

event-based sampling and last branching record information.

The future is expected to bring more heterogeneity both in execution as well as in mem-
ory hierarchies [112]. Performance models and predictions based on program charac-
teristics will decide upon scheduling a task to the best-fitting processor or relocating

its data to the optimal location in the topology.

Although memory bandwidths might increase, since stacked memory and non-volatile
technologies become more popular, the gap between CPU and memory speeds will re-

main, which is simply due to the high production costs of cache memory compared
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to DRAM. This causes memory loads to still remain interesting for investigation, espe-

cially for intercommunication when scaling up problems.

Finally, CPU vendors include increasingly more PMU information in the realms of
instruction and branch tracking, which eases the attributability of events to code. In
the future, processors can therefore be expected to communicate their behavior or even

identified performance bottlenecks more directly to the programmers.
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A Appendix

perf_event_open Counting Setup

#include <unistd.h>

#include <string.h>

#include <sys/ioctl.h>

#include <linux/perf_event.h>

#include <asm/unistd.h>

static long perf_event_open(struct perf_event_attr xhw_event, pid_t pid,
int cpu, int group_fd, unsigned long flags)

return syscall(__NR_perf_event_open, hw_event, pid, cpu, group_fd, flags);
3
int main(int argc, char =xxargv)
{
struct perf_event_attr pe;
long long count;
int fd;
memset (&pe, @, sizeof(struct perf_event_attr));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof(struct perf_event_attr);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;
pe.exclude_kernel = 1;
pe.exclude_hv = 1;
fd = perf_event_open(&pe, 0, -1, -1, 0);
if (fd == -1) {
fprintf (stderr, "Error opening leader %11lx\n", pe.config);
exit (EXIT_FAILURE);
}
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
printf (”"Measuring instruction count for this printf\n");
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
read(fd, &count, sizeof(long long));
printf ("Used %11ld instructions\n”, count);
close(fd);
i

Listing A.1: perf_event_open. When using perf_event_open, only a system call is pro-
vided by the libraries. To use it as a function, a function wrapper, as shown in the code,

has to be built. Exemplary settings are applied to the perf event later on.
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Comparison of gland, gland memcpy, and Intel mlc

The following listings show the hot path in assembly, annotated with spent cycles left

of the causing instructions.’

xor %eax ,%heax
xor %hecx ,%ecx
0.40% 272: mov -0x80 (%rbp),%rdi
0.20% add $0x1,%rcx
1.80% vmovap (%r9,%rax,1),%ymm4
37.92% vmovup (%rdi,%rax,1),%ymmo
47.90% vfmadd 0xa@2 (%rip),%ymm4 ,%ymmo
9.38% mov -0x88 (%rbp),%rdi
0.60% vmovup %ymm@ , (%rdi,%rax,1)
1.60% add $0x20 ,%rax
0.20% cmp $ox3ffffe,%rcx
* jbe 272

Listing A.2: Stream triad. Fused multiply-add instructions are used to perform the

calculations in one step. All costs amount to operand fetching and writeback.

Both Intel mlc and gland_memcpy result in 1ibc’s internal memcpy_avx_unaligned.

0.45% prefet 0x1c@(%rsi)

34.73% prefet 0x280 (%rsi)

31.31% vmovdq (%rsi),%ymmo

0.20% vmovdq 0x20 (%rsi),%ymml

15.51% vmovdq 0x40 (%rsi),%ymm2

0.69% vmovdqg Ox60 (%rsi),%ymm3

15.14% sub $OXTIFFffffffffff80 ,%rsi
Q.12% vmovnt %ymm@, (%rdi)

0.16% vmovnt %ymml ,0x20 (%rdi)

0.24% vmovnt %ymm2 ,0x40 (%rdi)

0.73% vmovnt %ymm3,0x60 (%rdi)

0.20% sub $OXFFFfffffffffff80,%rdi
0.16% add $OXTFFfffffffffff8o,%rdx
0.33% v jb 9810

Listing A.3: memcpy_avx_unaligned. All four AVX registers are used to move the data.
One can see how prefetching instructions are used to explicitly request succeeding
memory (offset by four AVX registers) first. Non-temporal moves are used to signal the
CPU to circumvent the caches for the writeback. One can see once more how operand

fetching results in the highest overhead in cycles, here.

!for gcc version 6.1.1, compiler flags: -03, values obtained with perf
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